National Transportation Communications for ITS Protocol
Object Definitions for Environmental Sensor Stations (ESS)

November 23, 2001

Includes Jointly Approved NTCIP 1204 Amendment 1 v02

This Adobe® PDF copy of an NTCIP standard is available at no-cost for a limited time through support from the U.S. DOT / Federal Highway Administration, whose assistance is gratefully acknowledged.

Published by

American Association of State Highway and Transportation Officials (AASHTO)
444 North Capitol Street, N.W., Suite 249
Washington, D.C. 20001

Institute of Transportation Engineers (ITE)
1099 14th Street, N.W., Suite 300 West
Washington, D.C. 20005-3438

National Electrical Manufacturers Association (NEMA)
1300 North 17th Street, Suite 1847
Rosslyn, Virginia 22209-3801

© 2001 AASHTO / ITE / NEMA. All rights reserved.
ACKNOWLEDGEMENTS

This publication was prepared by the NTCIP Environmental Sensor Station Working Group, which is a subdivision of the Joint Committee on the NTCIP. The Joint Committee is organized under a Memorandum of Understanding among the American Association of State Highway and Transportation Officials (AASHTO), the Institute of Transportation Engineers (ITE), and the National Electrical Manufacturers Association (NEMA). The Joint Committee on the NTCIP consists of six representatives from each of the standards organizations, and provides guidance for NTCIP development.

At the time that this document was prepared, the following individuals were members of the NTCIP Environmental Sensor Station Working Group:

- Golden Boyce
- Richard Carey
- Peter Davies
- Ed Fleege
- Rob Fox
- Mark Greer
- Robert Patterson
- Paul Pisano
- Blaine Tsugawa
- Ken Vaughn
- John Whited
- George Yanowski

Other individuals providing input to the document include:

- Bob De Roche
- Stan Doore
- Curtis Gobeli
- Bob Hart
- Jason Hedley
- Colin Rayman
- Elmar Reiter
- Susan Tonkin
- Jerry Waldman

In addition to the many volunteer efforts, recognition is also given to those organizations who supported the efforts of the working groups by providing comments and funding for the standard, including:

- Aanderaa Instruments
- AURORA
- California Department of Transportation
- Castle Rock Consultants
- Coastal Environmental Systems
- Colorado Department of Transportation
- Federal Highway Administration
- Georgia Institute of Technology
- Idaho Department of Transportation
- Illinois Department of Transportation
- Iowa Department of Transportation
- JAYCOR
- Maine Department of Transportation
- Minnesota Department of Transportation
- New York Department of Transportation
• Odetics ITS
• Ontario Ministry of Transportation
• Office of the Federal Coordinator for Meteorology
• Parsons Transportation Group
• P B Farradyne, Inc.
• Peek Traffic - Transyt Corp.
• Surface Systems Inc.
• Texas Transportation Institute
• University of North Dakota
• Vaisala, Inc.
• Viggen Corporation
• Virginia Department of Transportation
• Weather Solutions Group
• WELS Research Corporation
• Wisconsin Department of Transportation
FOREWORD

This document uses only metric units.

This publication defines the data elements and conformance requirements for environmental sensor stations. It defines requirements that are applicable to all NTCIP environmental sensor stations and it also contains optional and conditional clauses that are applicable to specific environments for which they are intended. There are no annexes to this document.

This document is an NTCIP Data Dictionary Standard. Data Dictionary Standards provide formal definitions of data elements for use within NTCIP systems; they are formally approved by AASHTO, ITE, and NEMA through a ballot process, after a formal recommendation by the NTCIP Joint Committee.

For more information about NTCIP standards, visit the NTCIP Web Site at http://www.ntcip.org. For a hardcopy summary of NTCIP information, contact the NTCIP coordinator at the above address.

In preparation of this NTCIP document, input of users and other interested parties was sought and evaluated. Inquires, comments, and proposed or recommended revisions should be submitted to:

 NTCIP Coordinator
 National Electrical Manufacturers Association
 1300 North 17th Street, Suite 1847
 Rosslyn, VA 22209-3801
 fax: (703) 841-3331
 e-mail: ntcip@nema.org

Approvals

This document was separately balloted and approved by AASHTO, ITE, and NEMA after recommendation by the Joint Committee on the NTCIP. Each organization has approved this standard as the following standard type, as of the date:

 ITE – Software Standard; June 1998
 NEMA – Standard; August 1998

History

From 1996 to 1998, this document was referenced as NEMA TS 3.7. However, to provide an organized numbering scheme for the NTCIP documents, this document is now referenced as NTCIP 1204. The technical specifications of NTCIP 1204 are identical to the former references, except as noted in the development history below:

 TS 3.7 version 97.01.11. November 1997 – Approved by AASHTO, ITE, and NEMA in 1998.
 TS 3.7 Amendment 1, version 98.01.02. September 1998 – Approved by AASHTO and NEMA in 1999 and approved by ITE in 2001.
 NTCIP 1204:1998 v01.12. September 1998 – Combined version 01.11 and Amendment 1 version 02, converted to revised standard numbering scheme, and made changes to the front matter. Added underline and strikethrough to indicate changes in Subclauses 3.2.2, 3.3.1, 3.8.11, 3.8.12, 3.11.2.10, 3.11.2.11, 3.11.2.12, 3.11.4.3, 3.11.4.4, 3.14.1 through 3.14.7, and 4.2.1.
NTCIP 1204:1998 v01.13. November 2001 – Reformatted for printing: incremented version number and updated date. Updated document to NTCIP 8002 v04 Template format, added approvals and history to Foreword, and converted references to TS 3 Standards to renumbered NTCIP Standards. The underline and strikethrough format used to indicate the amendment changes was removed. The normative reference to WMO BUFR was corrected and References were updated.
INTRODUCTION

This publication provides definitions of data elements for use with environmental sensor stations (ESS). The data is defined using the Simple Network Management Protocol (SNMP) object-type format as defined in RFC 1212 and would typically be exchanged using one of the NTCIP recognized Application Layers (e.g., SNMP).

This standard defines requirements that are applicable to all NTCIP environments and the standard also contains optional and conditional clauses that are applicable to specific environments for which they are intended.

The following keywords apply to this document: AASHTO, ITE, NEMA, NTCIP, ESS, RWIS, data, data dictionary, object, road weather, air quality.

In 1992, the NEMA 3-TS Transportation Management Systems and Associated Control Devices Section began the effort to develop the NTCIP. The Transportation Section’s purpose was to respond to user needs to include standardized systems communication in the NEMA TS 2 standard, Traffic Controller Assemblies. Under the guidance of the Federal Highway Administration’s NTCIP Steering Group, the NEMA effort was expanded to include the development of communications standards for all transportation field devices that could be used in an Intelligent Transportation Systems (ITS) network.

In September 1996, an agreement was executed among AASHTO, ITE, and NEMA to jointly develop, approve, and maintain the NTCIP standards. One of the first tasks of the joint effort was to establish the Environmental Sensor Station Working Group to standardize ESS equipment communication. The first ESS WG meeting was held in November 1996 to begin the development of this document.
If you are not willing to abide by the following notices, return these materials immediately.

Joint AASHTO, ITE, and NEMA
NTCIP Management Information Base and Data Dictionary

DISTRIBUTION NOTICE

To the extent and in the limited event these materials are distributed by AASHTO / ITE / NEMA in the form of a Management Information Base (“MIB”) or Data Dictionary (“DD”), AASHTO / ITE / NEMA extends the following permissions:

(i) you may make and/or distribute unlimited copies (including derivative works) of the MIB, including copies for commercial distribution, provided that (a) each copy you make and/or distribute contains this Notice and (b) each derivative work of the MIB uses the same module name followed by “-,” followed by your Internet Assigned Number Authority (IANA)-assigned enterprise number;
(ii) use of the MIB is restricted in that the syntax field may be modified only to reflect a more restrictive subrange or enumerated values;
(iii) the description field may be modified but only to the extent that: (a) only those bit values or enumerated values that are supported are listed; and (b) the more restrictive subrange is expressed.

These materials are delivered “AS IS” without any warranties as to their use or performance.

Disclaimer

The information in this publication was considered technically sound by the consensus of persons engaged in the development and approval of the document at the time it was developed. Consensus does not necessarily mean that there is unanimous agreement among every person participating in the development of this document.

AASHTO, ITE, and NEMA standards and guideline publications, of which the document contained herein is one, are developed through a voluntary consensus standards development process. This process brings together volunteers and/or seeks out the views of persons who have an interest in the topic covered by this publication. While AASHTO, ITE, and NEMA administer the process and establish rules to promote fairness in the development of consensus, they do not write the document and they do not independently test, evaluate, or verify the accuracy or completeness of any information or the soundness of any judgments contained in their standards and guideline publications.

AASHTO, ITE, and NEMA disclaim liability for any personal injury, property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, application, or reliance on this document. AASHTO, ITE, and NEMA disclaim and make no guaranty or warranty, express or implied, as to the accuracy or
completeness of any information published herein, and disclaims and makes no warranty that the information in this document will fulfill any of your particular purposes or needs. AASHTO, ITE, and NEMA do not undertake to guarantee the performance of any individual manufacturer or seller’s products or services by virtue of this standard or guide.

In publishing and making this document available, AASHTO, ITE, and NEMA are not undertaking to render professional or other services for or on behalf of any person or entity, nor are AASHTO, ITE, and NEMA undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. Information and other standards on the topic covered by this publication may be available from other sources, which the user may wish to consult for additional views or information not covered by this publication.

AASHTO, ITE, and NEMA have no power, nor do they undertake to police or enforce compliance with the contents of this document. AASHTO, ITE, and NEMA do not certify, test, or inspect products, designs, or installations for safety or health purposes. Any certification or other statement of compliance with any health or safety–related information in this document shall not be attributable to AASHTO, ITE, or NEMA and is solely the responsibility of the certifier or maker of the statement.

NTCIP is a trademark of AASHTO / ITE / NEMA.
CONTENTS

Section 1 INTRODUCTION ... 1-1
 1.1 Introduction ... 1-1
 1.2 Weather Impacts ... 1-1
 1.2.1 Transportation Facilities Maintenance .. 1-1
 1.2.2 Transportation Management ... 1-2
 1.2.3 Commercial Vehicle Operator / Traveler Information .. 1-2
 1.2.4 Meteorological Analysis and Forecasting ... 1-2
 1.2.5 Integration of Systems ... 1-2
 1.2.6 Informational References ... 1-2
 1.3 Benefits of Standardization .. 1-2
 1.4 Existing Standards .. 1-3
 1.4.1 BUFR .. 1-3
 1.4.2 Internet Standards .. 1-3
 1.4.3 International Standards Organization Standards ... 1-4
 1.4.4 NTCIP.. 1-4
 1.5 NTCIP System Design ... 1-4

Section 2 GENERAL .. 2-1
 2.1 Scope .. 2-1
 2.2 References .. 2-1
 2.2.1 Normative References .. 2-1
 2.2.2 Other References .. 2-2
 2.2.3 Contact Information ... 2-2
 2.3 General Statements ... 2-2
 2.4 Environmental Sensor Station Terms ... 2-3
 2.5 Acronyms .. 2-5
 2.6 Supplemental Figures ... 2-5

Section 3 OBJECT DEFINITIONS .. 3-1
 3.1 Environmental Sensor Station (ESS) MIB Header Information .. 3-1
 3.2 Identification Objects .. 3-1
 3.2.1 Station Category .. 3-1
 3.2.2 Station Site Description ... 3-2
 3.3 Data Instrumentation Objects .. 3-2
 3.3.1 Type of Station .. 3-2
 3.4 Location Objects .. 3-2
 3.4.1 Latitude .. 3-2
 3.4.2 Longitude ... 3-3
 3.4.3 Vehicle Speed ... 3-3
 3.4.4 Vehicle Bearing ... 3-3
 3.4.5 Odometer .. 3-3
 3.5 Station Elevation Objects .. 3-3
 3.5.1 Reference Height .. 3-4
 3.5.2 Pressure Height ... 3-4
 3.5.3 Wind Sensor Height ... 3-4
 3.5.4 Atmospheric Pressure Parameter ... 3-4
 3.6 Wind Data Section .. 3-4
 3.6.1 Average Wind Direction .. 3-4
 3.6.2 Average Wind Speed .. 3-4
 3.6.3 Spot Wind Direction ... 3-5
 3.6.4 Spot Wind Speed .. 3-5
 3.6.5 Wind Situation .. 3-5
3.7 Temperature Data Objects
 3.7.1 Number of Temperature Sensors
 3.7.2 Temperature Sensor Table
 3.7.3 Wet-Bulb Temperature
 3.7.4 Dew-Point Temperature
 3.7.5 Maximum Temperature
 3.7.6 Minimum Temperature

3.8 Humidity and Precipitation Data Objects
 3.8.1 Relative Humidity
 3.8.2 Water Depth
 3.8.3 Adjacent Snow Depth
 3.8.4 Roadway Snow Depth
 3.8.5 Roadway Snow Pack Depth
 3.8.6 Precipitation Indicator
 3.8.7 Rainfall or Water Equivalent of Snow
 3.8.8 Snowfall Accumulation Rate
 3.8.9 Precipitation Situation
 3.8.10 Ice Deposit (Thickness)
 3.8.11 Precipitation Start Time
 3.8.12 Precipitation End Time
 3.8.13 Total Precipitation Past One Hour
 3.8.14 Total Precipitation Past Three Hours
 3.8.15 Total Precipitation Past Six Hours
 3.8.16 Total Precipitation Past Twelve Hours
 3.8.17 Total Precipitation Past Twenty-Four Hours

3.9 Radiation Objects
 3.9.1 Solar Objects
 3.9.2 Cloud Cover Situation

3.10 Visibility Data Objects
 3.10.1 Visibility Parameter
 3.10.2 Visibility Situation

3.11 Pavement Sensor Objects
 3.11.1 Number of Pavement Sensors
 3.11.2 Pavement Sensor Table
 3.11.3 Number of Sub-Surface Sensors
 3.11.4 Sub-Surface Sensor Table

3.12 Mobile Platform Objects
 3.12.1 Mobile Friction
 3.12.2 Mobile Observation for the State of the Ground
 3.12.3 Mobile State of the Pavement

3.13 Pavement Treatment Objects
 3.13.1 Number of Treatments
 3.13.2 Pavement Treatment Table
 3.13.3 Treatment Amount
 3.13.4 Treatment Width

3.14 Air Quality Parameters
 3.14.1 Carbon Monoxide Parameter
 3.14.2 Carbon Dioxide Parameter
 3.14.3 Nitrous Oxide Parameter
 3.14.4 Nitrogen Dioxide Parameter
 3.14.5 Sulfur Dioxide Parameter
 3.14.6 Ozone Parameter
 3.14.7 Particulate Matter Parameter

3.15 Water Quality Parameters
Section 4 Conformance

4.1 Conformance Statement

4.2 Conformance Groups

- **4.2.1 ESS Configuration Conformance Group**
- **4.2.2 ESS Location Conformance Group**
- **4.2.3 Pressure Conformance Group**
- **4.2.4 Wind Data Conformance Group**
- **4.2.5 Mobile Wind Data Conformance Group**
- **4.2.6 Basic Temperature Data Conformance Group**
- **4.2.7 Enhanced Temperature Data Conformance Group**
- **4.2.8 Basic Precipitation Data Conformance Group**
- **4.2.9 Standard Precipitation Data Conformance Group**
- **4.2.10 Enhanced Precipitation Data Conformance Group**
- **4.2.11 Emerging Precipitation Data Conformance Group**
- **4.2.12 Solar Radiation Conformance Group**
- **4.2.13 Visibility Data Conformance Group**
- **4.2.14 Standard Pavement Sensor Data Conformance Group**
- **4.2.15 Enhanced Pavement Sensor Data Conformance Group**
- **4.2.16 Standard Sub-Surface Sensor Data Conformance Group**
- **4.2.17 Enhanced Sub-Surface Sensor Data Conformance Group**
- **4.2.18 Emerging Mobile Platform Conformance Group**
- **4.2.19 Pavement Treatment Conformance Group**
- **4.2.20 Air Quality Conformance Group**
- **4.2.21 Staffed Station Conformance Group**
Section 1
INTRODUCTION

1.1 INTRODUCTION

Environmental sensors include a wide array of sensors, including those which monitor weather, roadway surface, and air/water quality conditions. These sensors are typically connected to a nearby field device/microprocessor termed a Remote Processor Unit (RPU). An Environmental Sensor Station (ESS) consists of the RPU plus its suite of sensors. In the transportation community, these devices are frequently used in order to improve roadway maintenance and traffic operations.

Unfortunately, there have not been standards defining how these devices communicate with other related equipment. As a result, each manufacturer has developed its own protocol to meet its particular needs. To integrate systems manufactured by different companies, considerable extra work must be performed resulting in increased costs. This shortcoming limits interchangeability of components between different vendors’ and restricts information sharing within and between user organizations.

These problems have not been limited to weather and environmental monitoring. Many other devices also need to exchange information. In surface transportation, examples include traffic signal controllers, dynamic message signs, bus priority sensors, etc. To address these problems, the NTCIP is developing a family of open standards for communications among field devices and between field devices and central management stations, known as Information Management Subsystems (IMS).

1.2 WEATHER IMPACTS

Weather has a profound effect on driving condition. More generally, all modes of transportation can be severely affected by adverse weather events. Timely and reliable information on developing weather situations can help support highway maintenance, transit operations, trip planning and route selection. Transportation and meteorological agencies have common interests in improved coordination of surface transportation and weather information systems.

1.2.1 Transportation Facilities Maintenance

Several state transportation agencies already have a network of ESS in operation for road maintenance purposes; these systems have traditionally been called Road/Weather Information Systems (RWIS). At present, however, these systems often include proprietary elements which limit opportunities for effective information exchange.

The data from RWIS can be used to more accurately predict the start times, end times, and strength of storms. This information can then be used by maintenance agencies to better manage their staff and materials.

A study for the Strategic Highway Research Program (SHRP) showed that about two billion dollars are spent each year in North America on snow and ice control [1]. An estimated 10-12% of this total could be saved with better road and weather condition information. RWIS installed to date have proven highly cost effective.

The development of the NTCIP will allow a more open-systems approach, not only among RWIS equipment, but also with a wide variety of other field devices. It is expected that this open-systems approach will result in lower deployment and equipment costs similar to the PC industry. This in turn will allow for more devices to be deployed resulting in better decision-support to decrease maintenance costs.
1.2.2 Transportation Management

Intelligent Transportation Systems (ITS) are currently applying the benefits of information technology more broadly within surface transportation. One of the key goals of ITS is to improve the management of the existing surface transportation infrastructure. Weather is a key component which should be considered when making such management decisions. For example, start-up green times at traffic signals may need to be lengthened under icy conditions, and traffic flows can be redirected to avoid areas which are experiencing air quality or other problems. These benefits cut across all modes of surface transportation, e.g. highways, rail, and transit.

1.2.3 Commercial Vehicle Operator / Traveler Information

Another important area of ITS applications reside in the area of traveler information. By providing travelers with various environmental information, they can make more informed choices on their mode, route, and time of travel; this in turn will result in improved safety and increased convenience for travelers.

1.2.4 Meteorological Analysis and Forecasting

In meteorology, advancements in analysis and forecasting have been equally rapid. Besides conventional data sources, geostationary satellite observations give frequent worldwide updates on global weather patterns. Sophisticated Doppler radar can track the movement of severe storms. Improved Automated Surface Observing Systems (ASOS) are currently being installed at more than 850 locations throughout the United States. Also, many ships and aircraft now serve as mobile data collection platforms, extending weather observations beyond the reach of surface sites. These new weather data sources can greatly add to the output from ESS (RWIS) locations.

More accurate and precise weather forecasts are also of interest to travelers and highway maintenance managers. New, supercomputer 'meso-scale' weather forecasting models will soon become widely available under the multi-billion dollar National Weather Service (NWS) modernization program. Collectively, these systems and models will support much more detailed weather predictions than has previously been possible.

1.2.5 Integration of Systems

To make best use of these advancements, RWIS should be seen as a part of broader ITS and meteorological information systems. In Europe, integration has cut costs through accident reductions, lowered insurance premiums, improved snow removal efforts, and reduced traffic congestion. Information sharing across traditional system boundaries offers a win-win situation. RWIS data contribute to better weather forecasts which in turn support more efficient highway maintenance and more accurate traveler information. The key to these benefits is open standards, allowing agencies to share data and avoid getting locked into proprietary systems.

1.2.6 Informational References

1.3 BENEFITS OF STANDARDIZATION

As transportation systems become more sophisticated, planners, users, and equipment manufacturers recognize the need for system interoperability and integration. Currently, there is no common protocol with which different types of equipment can communicate. If RWIS are to be integrated with ITS and the wider field of meteorology, common communications standards must be established.

Before the NTCIP development started, each vendor of electronic devices used in transportation adopted a different protocol for data communications. This made it very difficult to mix equipment from different vendors in the same system, and to communicate between systems operated by adjacent agencies. The NTCIP is now providing a common standard that can be used by all vendors.
The NTCIP offers increased flexibility and choice for agencies operating transportation information systems such as RWIS (ESS). It removes barriers to interjurisdictional coordination and allows equipment of different types and manufacturers to be mixed on the same communications line. For these reasons, operating agencies will benefit from specifying that the NTCIP is included in all future purchases and upgrades.

Benefits of adopting open standards based on the NTCIP include:

- **Avoiding Early Obsolescence**: Though it may not be practical to retrofit NTCIP support in some old equipment, most ESS (RWIS) vendors will offer NTCIP support in current and future products. An operating agency can ensure that its equipment remains useful and compatible long into the future by requiring NTCIP support for all future purchases and upgrades. This will include central computers and field stations for Environmental Sensor Station, traffic control, or traveler information devices.

- **Providing Choice of Vendor**: Once an agency has a weather information system that includes support for NTCIP it can buy field stations from any manufacturer offering NTCIP-compatible products, and they will communicate with the agency’s “Information Management Subsystem” (‘IMS’, typically termed CPU).

- **Allowing Interjurisdictional Coordination**: In the future, an agency may want to communicate with ESS devices owned by other users and/or procured from different vendors. Under NTCIP, these various devices can be added onto an existing communications channel and mixed with different types of devices on the same line.

- **Using one Communications Network for All Devices**: NTCIP also allows a central computer to communicate with a range of field devices on the same communications channel. For example, if a dynamic message sign is installed near an ESS, the central computer could communicate with the sign controller using the communications channel already in place for the ESS. The communications network is usually the most expensive component of a transportation management system and use of the NTCIP maximizes that investment.

1.4 EXISTING STANDARDS

There are great benefits of adopting existing standards where possible. These include:

- reuse of software modules during development
- faster implementations
- reducing risks
- ability to integrate components from different manufacturers
- unambiguous meanings of terminology
- building on proven technologies

1.4.1 BUFR

The World Meteorological Organization (WMO) is the international organization which establishes and maintains standards, guidelines and procedures for meteorology, oceanography and hydrology. These documents have been developed over the last 100 years and they continue to evolve as technology advances and needs arise. BUFR and GRIB are the WMO standard binary codes which have been developed to take advantage of automated systems in meteorology, oceanography and hydrology. GRIB (Gridded Binary) is used for encoding gridded fields of data whereas BUFR is used for all other types of data. BUFR is the most applicable WMO standard on which to base the definition of ESS data elements.

1.4.2 Internet Standards

The Internet Engineering Task Force (IETF) is responsible for developing and maintaining the standards, guidelines and procedures for communications over the Internet. This group has become increasingly important over the last few years as the Internet has gained popularity. A wide range of Internet standards exist, including:
• Point-to-Point Protocol (PPP) - which may be used for NTCIP dial-up links
• Internet Protocol (IP) - which may be used for NTCIP communications over networks
• Transport Control Protocol (TCP) - which may be used to provide connection-oriented services over NTCIP networks
• User Datagram Protocol (UDP) - which may be used to provide connectionless transport services over NTCIP networks
• Simple Network Management Protocol (SNMP) - which may be used to exchange NTCIP data elements such as those defined within this document.

1.4.3 International Standards Organization Standards

The International Standards Organization (ISO) also develops various communication standards among a wide variety of other standards. The Open Systems Interconnect Reference Model (OSI) is a widely referenced ISO standard which defines the standard seven-layered communications model. While most implementations do not strictly conform to this standard, virtually all modern communications schemes, including the NTCIP, use many of the concepts defined within the standard. In addition, NTCIP communications may use the High Level Data Link Control Protocol (HDLC), another ISO standard, in specifying how to send a message over a single communications link.

1.4.4 NTCIP

To support ITS developments, US DOT funded the design of a National ITS Architecture. This architecture defines major ITS subsystems and the needs for information exchange among them. The National Transportation Communications for ITS Protocol (NTCIP) group is now developing standards for these information exchanges. NTCIP – a joint initiative of AASHTO, ITE, and NEMA – recognizes that weather and road condition information are vital for efficient highway maintenance and safer traffic operations. The family of NTCIP standards will support ESS (that is, RWIS) procurement and support information sharing between the various data users. The development of the NTCIP, including this ESS standard, makes use of existing standards as appropriate.

1.5 NTCIP SYSTEM DESIGN

NTCIP was initially designed to support traffic signal controllers because that was seen by the FHWA as an area of most pressing need. However, the development process planned that the protocol would be extended to other transportation environments (e.g., ITS) and, where appropriate, to other environments such as meteorology.

The NTCIP family of protocols is continually expanding to address additional needs. Work is in progress on additional protocols for computer-to-computer or center-to-center data exchange, transit communications, and communications with or between moving vehicles. The NTCIP along with other US DOT standards efforts will eventually provide a comprehensive family of communications protocols covering all appropriate ITS applications.

There may also be a future demand to use the system for communications to field devices that are not transportation related; for example air quality monitors for the Environmental Protection Agency (EPA), weather stations for the National Weather Service, or reservoir monitoring systems for the Corps of Engineers. The ultimate scope of NTCIP cannot be rigidly determined. The key is to determine how those changes might affect the system design and to provide flexible standards to accommodate these changes.

Where possible, NTCIP uses existing telecommunications and computer industry standards. That part of NTCIP addressing Environmental Sensor Stations (ESS) has also sought to follow worldwide standards used in meteorological data exchanges, such as BUFR (Binary Universal Format for the Representation of meteorological data). Sometimes, BUFR and NTCIP adopt different solutions, however, the aim has
been to maintain compatibility with BUFR and NTCIP, so that data can be easily converted from one format to the other.
Section 2
GENERAL

2.1 SCOPE

The communications between an ITS Management Center or portable computer and an Environmental Sensor Station (ESS) is accomplished by using the NTCIP Application Layer services to convey requests to access or modify values of ESS objects resident in the device via an NTCIP network. An NTCIP message consists of a specific Application Layer service and a set of data objects. An NTCIP message may be conveyed using any NTCIP defined class of service which has been specified to be compatible with the Simple Transportation Management Framework (STMF).

The scope of this document is limited to the functionality related to ESS within a transportation environment. This publication defines objects which are specific to ESS and also defines standardized object Groups which can be used for conformance statements.

2.2 REFERENCES

For approved revisions, contact:

NTCIP Coordinator
National Electrical Manufacturers Association
1300 North 17th Street, Suite 1847
Rosslyn, VA 22209-3801

For proposed revisions, which are under discussion by the relevant NTCIP Working Group, and revisions recommended by the NTCIP Joint Committee are available on the World Wide Web at http://www.ntcip.org.

The following standards (normative references) contain provisions which, through reference in this text, constitute provisions of this Standard. Other documents and standards (other references) are referenced in these documents, which might provide a complete understanding of the entire protocol and the relations between all parts of the protocol. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this Standard are encouraged to investigate the possibility of applying the most recent editions of the standard listed below.

2.2.1 Normative References

RFC1155 Structure and Identification of Management Information for TCP/IP-based Internets. K. McCloghrie; M. Rose; 05/10/1990

RFC1212 Concise MIB Definitions. K. McCloghrie; M. Rose; 03/26/1991

2.2.2 Other References

2.2.2.1 NEMA Standards
NTCIP 1101:1996 National Transportation Communications and ITS Protocol - STMF
NTCIP 2001:1996 National Transportation Communications and ITS Protocol - Class B Profile

2.2.2.2 World Meteorology Organization and American Meteorological Society

2.2.2.3 Office of the Federal Coordinator for Meteorology

2.2.3 Contact Information

2.2.3.1 ISO/IEC Standards
Members of the ISO maintain registers of currently valid ISO/IEC International Standards. For the USA, the member of ISO is the American National Standards Institute (ANSI), which may be contacted as follows:

ANSI
11 West 42nd Street, 13th Floor
New York, NY 10036
(212) 642-4900

2.2.3.2 RFC Documents
Electronic copies of RFC documents may be obtained using “anonymous” FTP to the host nic.ddn.mil or ds.internic.net. Printed copies are available from:

DDN Network Information Center
14200 Park Meadow Drive
Suite 200
Chantilly, VA 22021
(800) 365-3642
(703) 802-4535

2.2.3.3 American Meteorological Society and World Meteorological Organization Documents
Prepayment is required prior to shipment of these documents. Printed copies are available from:

American Meteorological Society
45 Beacon Street
Boston, MA 02108
(617) 227-2425

2.2.3.4 OFCM Documents
Office of the Federal Coordinator for Meteorology
8455 Colesville Rd., Suite 1500
Silver Spring, MD 20910
(301) 427-2002

2.3 GENERAL STATEMENTS

For all bitmapped objects, if a bit is zero (0), then the referenced function is disabled or not supported, and if a bit is one (1), then the referenced function is enabled or supported.
The format of this document is unlike other NTCIP Standards. The format for this standard groups the objects by device and purpose irrespective of the tree structure within the environmental sensor station node. Therefore the object definition identifiers indicate either the NTCIP node or the BUFR node. The groupings of these objects are indicated by title. The tree structure is shown beginning from the devices node within the NEMA node and maps this to the section structure.

This document is managed by the Joint AASHTO/ITE/NEMA Committee on the NTCIP and proprietary features should be defined through vendor-specific nodes or vendor-specific extensions to this Management Information Base (MIB).

2.4 ENVIRONMENTAL SENSOR STATION TERMS

For a better understanding of this standard, here are some terms and definitions.

BITMAP
A subset of the SYNTAX type OCTET STRING where every bit is a representation of a part or function (e.g. lamp 1 = bit 1, lamp 2 = bit 2).

BITMAP8
BITMAP with 8 bits

BITMAP16
BITMAP with 16 bits

BITMAP32
BITMAP with 32 bits

Binary Universal Form for the Representation of meteorological data (BUFR)
BUFR is the name of the WMO standard binary code for the exchange and storage of non-gridded meteorological data.

Checksum
Result of an algorithm used to detect errors.

Communication Failure
When a computer (central/master/portable/maintenance) cannot communicate with a specific station for any reason.

Communication Interface
The serial communication port on the controller used to communicate with another device.

Controller Address
See Physical Address.

Cyclical Redundancy Check (CRC)
A data error-detection scheme. A polynomial algorithm is performed on a block of data. There are different algorithms involving a different number of bits and bytes in the calculation such as CRC-16 and CRC-32.

Download
To transfer information into the referenced device.

Environmental Analysis Package
The component within a management subsystem which performs advanced processing of the collected environmental data. This would include the analysis, forecasting and packaging of weather and road condition information for resource management.

Environmental Sensor Station (ESS)
A location that includes a remote processor unit (RPU) connected to one or more sensors for the collection of environmental or meteorological data.

Environmental Market Package
A set of components which perform all operations related to sensing, collecting, processing and exchanging environmental related information, including the exchange of data among the dispersedly located equipment.

Information Management Subsystem (IMS)
A generic reference to any one of the management subsystems identified in the National Architecture; these include Traffic Management Subsystems, Transit Management Subsystems, Emergency Management Subsystems, etc. These management subsystems are responsible for collecting and processing information from remote devices, controlling...
remote devices, and/or disseminating this information to other subsystems or devices. These devices may include, but are not limited to, ESS.

Intelligent Transportation Systems (ITS)

The application of advanced information processing and communications, sensing, and control technologies to surface transportation with the objective of promoting more efficient use of the existing highway and transportation network, increasing safety and mobility, and decreasing the environmental cost of travel.

ITS Management Center

The physical location of an Information Management Subsystem(s).

Management Information Base (MIB)

Management information of object definitions so that devices on a network can be remotely monitored, configured and controlled. The information is provided in a format called Abstract Syntax Notation1 (ASN.1), which is an international standard for defining objects.

National Transportation Communications for ITS Protocol (NTCIP)

The NTCIP is a family of protocols that provide common control and data collection services as well as accommodating various system topologies and data routing duties. The NTCIP will support not only currently deployed systems, but new systems and technologies as they become available.

Physical Address

The Data Link identifier which differentiates a field device in a multidrop-or point-to-point communication circuit, to allow the central computer to communicate with a specific field device.

Point-To-Point

A form of communications where data is transmitted between two devices without any other devices existing on the communication circuit.

Protocol

A specific set of rules, procedures and conventions defining the format and timing of data transmissions between devices that must be accepted and used to understand each other.

Remote Processor Unit (RPU)

A field processor which collects data from sensors and can communicate the collected data to other computers; the processor may also process the collected data and/or control equipment.

Road/Weather Information System (RWIS)

The collection of RPUs and sensors connected to a central system for analysis and use by maintenance personnel.

Sensor

A device which is capable of detecting a condition and reporting the result to an RPU.

Simple Network Management Protocol (SNMP)

A communications protocol developed by the IETF, used for configuration and monitoring of network devices.

Simple Transportation Management Framework (STMF)

Describes the organization of the information within devices and the methods of retrieving or modifying any information within the device. STMF also explains how to generate and utilize computer readable information organization descriptions.

Simple Transportation Management Protocol (STMP)

A variation of SNMP developed by NEMA to address low bandwidth communication links and real time device monitoring.

Upload

To transfer information from the referenced device to the central computer or an attached portable computer.

For a definition of meteorological terms, see the *Glossary of Meteorology*.
2.5 ACRONYMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUFR</td>
<td>Binary Universal Form for the Representation of meteorological data</td>
</tr>
<tr>
<td>CRC</td>
<td>Cyclical Redundancy Check</td>
</tr>
<tr>
<td>ESS</td>
<td>Environmental Sensor Station</td>
</tr>
<tr>
<td>IMS</td>
<td>Information Management Subsystem</td>
</tr>
<tr>
<td>ITS</td>
<td>Intelligent Transportation Systems</td>
</tr>
<tr>
<td>MIB</td>
<td>Management Information Base</td>
</tr>
<tr>
<td>NTCIP</td>
<td>National Transportation Communications for ITS Protocol</td>
</tr>
<tr>
<td>RPU</td>
<td>Remote Processor Unit</td>
</tr>
<tr>
<td>RWIS</td>
<td>Road/Weather Information System</td>
</tr>
<tr>
<td>SNMP</td>
<td>Simple Network Management Protocol</td>
</tr>
<tr>
<td>STMF</td>
<td>Simple Transportation Management Framework</td>
</tr>
<tr>
<td>STMP</td>
<td>Simple Transportation Management Protocol</td>
</tr>
</tbody>
</table>

2.6 SUPPLEMENTAL FIGURES

The following two figures provide a pictorial representation of the ESS architecture and the Environmental Sensor Station Tree Structure. This is an architecture that is a proposed component for the National Architecture. The architecture diagram identifies some of the terms and acronyms described above and identifies the focus of this standard. The tree structure identifies how the object definitions are combined under specific nodes.
This is the subject matter of this standard.
Environmental Sensor Station Tree Branch of the Devices Tree
<This page is intentionally left blank>
Section 3

OBJECT DEFINITIONS

This section defines those objects which are specifically used by Environmental Sensor Stations (ESS). The objects are defined using the OBJECT-TYPE macro as specified in RFC 1212. The text provided from Clause 3.1 through the end of the section (except the clause headings) constitutes the standard ESSMIB1.

All of the objects defined in this document reside under the "ess" node of the global naming tree. To aid in object management, the "ess" node has been subdivided into logical categories, each defined by a node under the "ess" node. The individual objects are then located under the appropriate node.

Nodes should not be confused with Conformance Groups, which are defined in Section 4. A Conformance Group is a logical grouping of objects which is used for conformance statements. While Conformance Groups will frequently correspond to the nodal structure, a Conformance Group may contain objects which are not lexicographically ordered.

3.1 ENVIRONMENTAL SENSOR STATION (ESS) MIB HEADER INFORMATION

ESS-MIB DEFINITIONS ::= BEGIN
IMPORTS
 IpAddress, Counter
 FROM RFC1155-SMI
 DisplayString
 FROM RFC1158-SMI
 OBJECT-TYPE
 FROM RFC-1212
 experimental
 FROM NEMA_SMI
 devices
 FROM TMIB;
-- For the purpose of this section, the following OBJECT IDENTIFIERS are used:
ess OBJECT IDENTIFIER ::= {devices 5}
essBufr OBJECT IDENTIFIER ::= {ess 1}
-- This node contains objects that describe BUFR information based on the BUFR Standards.
essNtcip OBJECT IDENTIFIER ::= {ess 2}
-- This node contains objects that describe surface transportation environmental information
-- which deviate from the BUFR Standards.

3.2 IDENTIFICATION OBJECTS

-- These are objects used to describe the identification of the environmental sensor station.
essNtcipIdentification OBJECT IDENTIFIER ::= {essNtcip 1 }

3.2.1 Station Category

essNtcipCategory OBJECT-TYPE
SYNTAX INTEGER { other (1),
 permanent (2),
 transportable (3),
 mobile (4)}
ACCESS read-only
STATUS mandatory
DESCRIPTION "Indicates the type of station.

<table>
<thead>
<tr>
<th>value</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>other</td>
<td>of a design not listed in this standard.</td>
</tr>
<tr>
<td>permanent</td>
<td>not designed to be relocated.</td>
</tr>
<tr>
<td>transportable</td>
<td>able to be relocated, but does not take readings while moving.</td>
</tr>
<tr>
<td>mobile</td>
<td>capable of taking readings while moving.</td>
</tr>
</tbody>
</table>

::= {essNtcipIdentification 1}

3.2.2 Station Site Description

essNtcipSiteDescription OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-write
STATUS mandatory
DESCRIPTION "A textual description of the station’s location."
::= {essNtcipIdentification 2}

-- it is also recognized that there would be a great value of an object to indicate the quality of data;
-- however, this is a very complex topic and thus we have not determined an appropriate mechanism.

3.3 DATA INSTRUMENTATION OBJECTS

-- Contains objects used to describe the type of data and the type of instrumentation used to collect the data being received from the ess.
esBufrInstrumentation OBJECT IDENTIFIER ::= {essBufr 2 }

3.3.1 Type of Station

essTypeofStation OBJECT-TYPE
SYNTAX INTEGER (0..3)
ACCESS read-only
STATUS mandatory
DESCRIPTION "Integer value that indicates the type of station. If the station is a hybrid station, it shall be defined as two stations, one staffed and one automatic.

<table>
<thead>
<tr>
<th>value</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - automatic</td>
<td>the data is collected electronically/mechanically</td>
</tr>
<tr>
<td>1 - staffed</td>
<td>the data is collected by humans</td>
</tr>
<tr>
<td>3 - missingValue</td>
<td>the type of station is unknown.</td>
</tr>
</tbody>
</table>

REFERENCE "WMO Binary Code form FM 94 BUFR Table B table reference descriptor 0 02 001."
::= {essBufrInstrumentation 1}

-- The definition of the type, make, model, and version of the various sensors connected to the ESS shall be defined in the Global Module Table.

3.4 LOCATION OBJECTS

-- Contains objects used to describe the location of the ess that is transmitting the collected data.
esNtcipLocation OBJECT IDENTIFIER ::= {essNtcip 2 }

3.4.1 Latitude

essLatitude OBJECT-TYPE
SYNTAX INTEGER (-90000000..90000001)
ACCESS read-only
STATUS mandatory
DESCRIPTION “The latitude in 10^-6 degrees of the ESS station. The essLatitude at the North Pole is 90,000,000. The essLatitude at the South Pole is -90,000,000. The value 90,000,001 shall indicate a missing value.”
REFERENCE “Resolution based on on-going location referencing activities; the WMO Binary Code form FM.94 BUFR Table B table reference descriptor 0 05 001 can be obtained by dividing this value by 10.”
::= {essNtcipLocation 1}

3.4.2 Longitude
essLongitude OBJECT-TYPE
SYNTAX INTEGER (-180000000..180000001)
ACCESS read-only
STATUS mandatory
DESCRIPTION “The east longitude in 10^-6 degrees from the Prime Meridian of the ESS location. The essLongitude of 180 degrees West shall be -180,000,000. The essLongitude of 180 degrees East shall be 180,000,000. The value 180,000,001 shall indicate a missing value.”
REFERENCE “Resolution based on on-going location referencing activities; the WMO Binary Code form FM.94 BUFR Table B table reference descriptor 0 06 001 can be obtained by dividing this value by 10.”
::= {essNtcipLocation 2}

3.4.3 Vehicle Speed
essVehicleSpeed OBJECT-TYPE
SYNTAX INTEGER (0..255)
ACCESS read-only
STATUS mandatory
DESCRIPTION “Indicates the current speed being reported by the vehicle in kilometers per hour. The value 255 shall indicate an error condition or missing value.”
::= {essNtcipLocation 3}

3.4.4 Vehicle Bearing
essVehicleBearing OBJECT-TYPE
SYNTAX INTEGER (0..361)
ACCESS read-only
STATUS mandatory
DESCRIPTION “Indicates the current bearing of the vehicle in degrees, measured clockwise from True North. The value 361 shall indicate an error condition or missing value.”
::= {essNtcipLocation 4}

3.4.5 Odometer
essOdometer OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION “Indicates the current odometer reading of the vehicle in meters.”
::= {essNtcipLocation 5}

3.5 STATION ELEVATION OBJECTS
-- Contains objects used to describe the elevation and atmospheric pressure at the ess that is transmitting the collected data.
essNtcipHeight OBJECT IDENTIFIER ::= {essNtcip 3 }
essBufrLocationVertical OBJECT IDENTIFIER ::= {essBufr 7 }
3.5.1 Reference Height

`essReferenceHeight` OBJECT-TYPE
SYNTAX INTEGER (-400..8001)
ACCESS read-only
STATUS mandatory
DESCRIPTION "The reference elevation of the ESS in meters above mean sea level. For a permanent station, this height shall be measured to the base of the structure; for transportable stations, this height shall be measured to the ground surface upon which the station resides; and for mobile, this height shall be measured to the surface under the vehicle. The value 8001 shall indicate an missing value."
REFERENCE "Resolution based on WMO Binary Code form FM 94 BUFR Table B table reference descriptor 0 07 001."
::= {essNtcipHeight 1}

3.5.2 Pressure Height

`essPressureHeight` OBJECT-TYPE
SYNTAX INTEGER (-1000..1001)
ACCESS read-only
STATUS mandatory
DESCRIPTION "The height of the pressure sensor with respect to the `essReferenceHeight` in meters. The value 1001 shall indicate a missing value."
REFERENCE "essReferenceHeight plus this value equals the WMO Binary Code form FM 94 BUFR Table B table reference descriptor 0 07 001."
::= {essNtcipHeight 2}

3.5.3 Wind Sensor Height

`essWindSensorHeight` OBJECT-TYPE
SYNTAX INTEGER (-1000..1001)
ACCESS read-only
STATUS mandatory
DESCRIPTION "The height of the wind sensor with respect to the `essReferenceHeight` in meters. The value 1001 shall indicate a missing value."
::= {essNtcipHeight 3}

3.5.4 Atmospheric Pressure Parameter

`essAtmosphericPressure` OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION "The force per unit area exerted by the atmosphere in 1/10ths of millibars, a.k.a. tenths of hectoPascals. A value of 65535 shall indicate an error condition or missing value."
REFERENCE "WMO Binary Code form FM 94 BUFR Table B table reference descriptor 0 07 004."
::= { essBufrLocationVertical 4}

3.6 Wind Data Section

Contains objects used to describe the wind data that is collected at the ess.

`essNtcipWind` OBJECT IDENTIFIER ::= {essNtcip 4 }
`essBufrWind` OBJECT IDENTIFIER ::= {essBufr 11 }

3.6.1 Average Wind Direction

`essAvgWindDirection` OBJECT-TYPE
SYNTAX INTEGER (0..361)
ACCESS read-only
STATUS mandatory
DESCRIPTION “A two minute average of the direction from which the wind is blowing measured clockwise in degrees from true North and measured at a height as indicated by essWindSensorHeight. A value of 361 shall indicate an error condition or missing value.”
REFERENCE “WMO Binary Code form FM 94 BUFR Table B table reference descriptor 0 11 001.”
 ::= {essBufrWind 1}

3.6.2 Average Wind Speed
essAvgWindSpeed OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION “A two minute average of the wind speed in tenths of meters per second measured at a height as indicated by essWindSensorHeight. A value of 65535 shall indicate an error condition or missing value.”
REFERENCE “WMO Binary Code form FM 94 BUFR Table B table reference descriptor 0 11 002.”
 ::= {essBufrWind 2}

3.6.3 Spot Wind Direction
essSpotWindDirection OBJECT-TYPE
SYNTAX INTEGER (0..361)
ACCESS read-only
STATUS mandatory
DESCRIPTION “The direction from which the wind is blowing measured in degrees clockwise from true North and measured at a height as indicated by essWindSensorHeight. A value of 361 shall indicate an error condition or missing value. For mobile platforms, the wind direction shall be corrected for vehicle movement.”
 ::= {essNtcipWind 1}

3.6.4 Spot Wind Speed
essSpotWindSpeed OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION “The wind speed in tenths of meters per second measured at a height as indicated by
essWindSensorHeight. A value of 65535 shall indicate an error condition or missing value. For mobile
platforms, the wind speed shall be corrected for vehicle movement.”
 ::= {essNtcipWind 2}

3.6.5 Wind Situation
essWindSituation OBJECT-TYPE
SYNTAX INTEGER { other (1),
unknown (2),
calm (3),
lightBreeze (4),
moderateBreeze (5),
strongBreeze (6),
gale (7),
moderateGale (8),
strongGale (9),
stormWinds (10),
hurricaneForceWinds (11),
gustyWinds (12)}
ACCESS read-only
STATUS mandatory
DESCRIPTION "Describes the weather and travel situation in terms of wind from staffed stations only. Specific ranges for these values are defined in the Glossary of Meteorology. Defined values are:

<table>
<thead>
<tr>
<th>Range</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>other</td>
<td>not defined within this standard, consult manufacturers documentation</td>
</tr>
<tr>
<td>unknown</td>
<td>Unknown conditions</td>
</tr>
<tr>
<td>calm</td>
<td>Calm</td>
</tr>
<tr>
<td>lightBreeze</td>
<td>Light breeze</td>
</tr>
<tr>
<td>moderateBreeze</td>
<td>Moderate breeze</td>
</tr>
<tr>
<td>strongBreeze</td>
<td>Strong breeze</td>
</tr>
<tr>
<td>gale</td>
<td>Gale</td>
</tr>
<tr>
<td>moderateGale</td>
<td>Moderate gale</td>
</tr>
<tr>
<td>strongGale</td>
<td>Strong gale</td>
</tr>
<tr>
<td>stormWinds</td>
<td>Storm winds</td>
</tr>
<tr>
<td>hurricaneForceWinds</td>
<td>Hurricane force winds</td>
</tr>
</tbody>
</table>
| gustyWinds | Gusty winds – defined by a peak and a lull of greater than 46.3 tenths of meters per second within a 2 minute period."

::= {essNtcipWind 3}

3.6.6 Maximum Wind Gust Speed

essMaxWindGustSpeed OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION "The maximum wind gust recorded during the 10 minutes preceding the observation at a height as indicated by essWindSensorHeight and measured in tenths of meters per second. The value 65535 shall indicate an error condition or missing value."
REFERENCE "WMO Binary Code form FM 94 BUFR Table B table reference descriptor 0 11 041."
::= {essBufrWind 41}

3.6.7 Maximum Wind Gust Direction

essMaxWindGustDir OBJECT-TYPE
SYNTAX INTEGER (0..361)
ACCESS read-only
STATUS mandatory
DESCRIPTION "The direction of the maximum wind gust recorded during the 10 minutes preceding the observation at a height as indicated by essWindSensorHeight; measured in degrees clockwise from true North. The value 361 shall indicate an error condition or missing value."
REFERENCE "WMO Binary Code form FM 94 BUFR Table B table reference descriptor 0 11 043."
::= {essBufrWind 43}

3.7 TEMPERATURE DATA OBJECTS

-- Contains objects used to describe the temperature data that is collected at the ess.
essNtcipTemperature OBJECT IDENTIFIER ::= {essNtcip 5 }

3.7.1 Number of Temperature Sensors

essNumTemperatureSensors OBJECT-TYPE
SYNTAX INTEGER (0..255)
ACCESS read-only
STATUS mandatory
DESCRIPTION "Indicates the number of entries in the temperature sensor table."
::= {essNtcipTemperature 1}

3.7.2 Temperature Sensor Table
essTemperatureSensorTable OBJECT-TYPE
SYNTAX SEQUENCE OF EssTemperatureSensorEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION "Table containing the temperature sensor data fields."
 ::= {essNtcipTemperature 2}

essTemperatureSensorEntry OBJECT-TYPE
SYNTAX EssTemperatureSensorEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION "Parameters for specific temperature sensor data fields."
INDEX {essTemperatureSensorIndex}
 ::= {essTemperatureSensorTable 1}

EssTemperatureSensorEntry ::= SEQUENCE {
 essTemperatureSensorIndex INTEGER,
 essTemperatureSensorHeight INTEGER,
 essAirTemperature INTEGER }

3.7.2.1 Temperature Sensor Index
essTemperatureSensorIndex OBJECT-TYPE
SYNTAX INTEGER (1..255)
ACCESS read-only
STATUS mandatory
DESCRIPTION "Enumerated list of row entries that will provide temperature sensor data."
 ::= {essTemperatureSensorEntry 1}

3.7.2.2 Temperature Sensor Height
essTemperatureSensorHeight OBJECT-TYPE
SYNTAX INTEGER (-1000..1001)
ACCESS read-only
STATUS mandatory
DESCRIPTION "The height of the temperature sensor as measured in meters above
essReferenceHeight."
 ::= {essTemperatureSensorEntry 2}

3.7.2.3 Air Temperature
essAirTemperature OBJECT-TYPE
SYNTAX INTEGER (-1000..1001)
ACCESS read-only
STATUS mandatory
DESCRIPTION "The dry-bulb temperature in tenths of degrees Celsius. The temperature is an
instantaneous reading at the height specified by essTemperatureSensorHeight. The value 1001 shall
indicate an error condition or missing value."
REFERENCE "Resolution is based on WMO Binary Code form FM 94 BUFR Table B table reference
descriptor 0 12 001; temperature in kelvin is determined by adding 273.15 to this value."
 ::= {essTemperatureSensorEntry 3}

3.7.3 Wet-Bulb Temperature
essWetbulbTemp OBJECT-TYPE
SYNTAX INTEGER (-1000..1001)
ACCESS read-only
STATUS mandatory
DESCRIPTION “The wet-bulb temperature in tenths of degrees Celsius. The temperature is an instantaneous reading at the height specified by the essTemperatureSensorHeight as specified in the first row of the essTemperatureTable. The value 1001 shall indicate an error condition or missing value.”

REFERENCE “Resolution is based on WMO Binary Code form FM 94 BUFR Table B table reference descriptor 0 12 002; temperature in kelvin is determined by adding 273.15 to this value.”

::= {essNtcipTemperature 3}

3.7.4 Dew-Point Temperature

essDewpointTemp OBJECT-TYPE
SYNTAX INTEGER (-1000..1001)
ACCESS read-only
STATUS mandatory
DESCRIPTION “The dewpoint temperature in tenths of degrees Celsius. The temperature is an instantaneous reading at the height specified by the essTemperatureSensorHeight as specified in the first row of the essTemperatureTable. The value 1001 shall indicate an error condition or missing value.”

REFERENCE “Resolution is based on WMO Binary Code form FM 94 BUFR Table B table reference descriptor 0 12 003; temperature in kelvin is determined by adding 273.15 to this value.”

::= {essNtcipTemperature 4}

3.7.5 Maximum Temperature

essMaxTemp OBJECT-TYPE
SYNTAX INTEGER (-1000..1001)
ACCESS read-only
STATUS mandatory
DESCRIPTION “The maximum temperature in tenths of degrees Celsius recorded during the 24 hours preceding the observation at the height specified by the essTemperatureSensorHeight as specified in the first row of the essTemperatureTable. The value 1001 shall indicate an error condition or missing value.”

REFERENCE “Resolution is based on WMO Binary Code form FM 94 BUFR Table B table reference descriptor 0 12 011; temperature in kelvin is determined by adding 273.15 to this value.”

::= {essNtcipTemperature 5}

3.7.6 Minimum Temperature

essMinTemp OBJECT-TYPE
SYNTAX INTEGER (-1000..1001)
ACCESS read-only
STATUS mandatory
DESCRIPTION “The minimum temperature in tenths of degrees Celsius recorded during the 24 hours preceding the observation at the height specified by the essTemperatureSensorHeight as specified in the first row of the essTemperatureTable. The value 1001 shall indicate an error condition or missing value.”

REFERENCE “Resolution is based on WMO Binary Code form FM 94 BUFR Table B table reference descriptor 0 12 012; temperature in kelvin is determined by adding 273.15 to this value.”

::= {essNtcipTemperature 6}

3.8 HUMIDITY AND PRECIPITATION DATA OBJECTS

-- Contains objects used to describe the humidity and precipitation data that is collected by the -- ess.

essBufrPrecip OBJECT IDENTIFIER ::= {essBufr 13}
essNtcipPrecip OBJECT IDENTIFIER ::= {essNtcip 6}

3.8.1 Relative Humidity

essRelativeHumidity OBJECT-TYPE
SYNTAX INTEGER (0..101)
ACCESS read-only
STATUS mandatory
DESCRIPTION “The relative humidity in percent. The value of 101 shall indicate an error condition or missing value.”
REFERENCE “WMO Binary Code form FM 94 BUFR Table B table reference descriptor 0 13 003.”
::= {essBufrPrecip 3}

3.8.2 Water Depth

essWaterDepth OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS optional
DESCRIPTION “Indicates the depth of the water from a user defined point in centimeters. The value of 65535 shall indicate an error condition or missing value. This may be used for stream depth, depth of water over a roadway, reservoir depth, or other such uses.”
::= {essNtcipPrecip 1}

3.8.3 Adjacent Snow Depth

essAdjacentSnowDepth OBJECT-TYPE
SYNTAX INTEGER (0..3001)
ACCESS read-only
STATUS mandatory
DESCRIPTION “The depth of snow in centimeters on representative areas other than the highway pavement, avoiding drifts and plowed areas. The value 3001 shall indicate an error condition or missing value.”
::= {essNtcipPrecip 2}

3.8.4 Roadway Snow Depth

essRoadwaySnowDepth OBJECT-TYPE
SYNTAX INTEGER (0..3001)
ACCESS read-only
STATUS mandatory
DESCRIPTION “The current depth of unpacked snow in centimeters on the driving surface. The value 3001 shall indicate an error condition or missing value.”
::= {essNtcipPrecip 3}

3.8.5 Roadway Snow Pack Depth

essRoadwaySnowPackDepth OBJECT-TYPE
SYNTAX INTEGER (0..3001)
ACCESS read-only
STATUS mandatory
DESCRIPTION “The current depth of packed snow in centimeters on the roadway surface. The value 3001 shall indicate an error condition or missing value.”
::= {essNtcipPrecip 4}

3.8.6 Precipitation Indicator

essPrecipYesNo OBJECT-TYPE
SYNTAX INTEGER { precip (1), noPrecip (2), error (3)}
ACCESS read-only
STATUS mandatory
DESCRIPTION “Indicates whether or not moisture is detected by the sensor.”
::= {essNtcipPrecip 5}

3.8.7 Rainfall or Water Equivalent of Snow
essPrecipRate OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION "The rainfall, or water equivalent of snow, rate in tenths of grams per square meter per second (for rain, this is approximately to 0.36 mm/hr). A value of 65535 shall indicate an error condition or missing value."
REFERENCE "WMO Binary Code form FM 94 BUFR Table B table reference descriptor 0 13 014."
::= { essBufrPrecip 14}

3.8.8 Snowfall Accumulation Rate
essSnowfallAccumRate OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION "The snowfall accumulation rate in 10^-7 meters per second (this is equivalent to 0.36 mm/hr). The value 65535 shall indicate an error condition or missing value."
REFERENCE "WMO Binary Code form FM 94 BUFR Table B table reference descriptor 0 13 015."
::= { essBufrPrecip 15}

3.8.9 Precipitation Situation
essPrecipSituation OBJECT-TYPE
SYNTAX INTEGER { other (1),
 unknown (2),
 noPrecipitation (3),
 unidentifiedSlight (4),
 unidentifiedModerate (5),
 unidentifiedHeavy (6),
 snowSlight (7),
 snowModerate (8),
 snowHeavy (9),
 rainSlight (10),
 rainModerate (11),
 rainHeavy (12),
 frozenPrecipitationSlight (13),
 frozenPrecipitationModerate (14),
 frozenPrecipitationHeavy (15)}
ACCESS read-only
STATUS mandatory
DESCRIPTION "Describes the weather situation in terms of precipitation. Defined values of intensity are:

<table>
<thead>
<tr>
<th>Intensity</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>slight</td>
<td>< 2mm/h water equivalent</td>
</tr>
<tr>
<td>moderate</td>
<td>>= 2 and < 8 mm/h water equivalent</td>
</tr>
<tr>
<td>heavy</td>
<td>>= 8 mm/h water equivalent</td>
</tr>
</tbody>
</table>

If one exists, the corresponding BUFR value is indicated for staffed (BUFRs) and automated (BUFRa) stations. The indicated value can be found in the BUFR Table referenced below. Defined values are:

<table>
<thead>
<tr>
<th>Range</th>
<th>BUFRa</th>
<th>BUFRs</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>unknown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>no precipitation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>unidentified slight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>unidentified moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>unidentified heavy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>171</td>
<td>85</td>
<td>snow slight</td>
</tr>
<tr>
<td>8</td>
<td>172</td>
<td>86</td>
<td>snow moderate</td>
</tr>
<tr>
<td>9</td>
<td>173</td>
<td>86</td>
<td>snow heavy</td>
</tr>
<tr>
<td>10</td>
<td>61</td>
<td></td>
<td>rain slight</td>
</tr>
<tr>
<td>11</td>
<td>165</td>
<td>63</td>
<td>rain moderate</td>
</tr>
<tr>
<td>12</td>
<td>163</td>
<td>65</td>
<td>rain heavy</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>frozen precipitation slight</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>frozen precipitation moderate</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>frozen precipitation heavy</td>
</tr>
</tbody>
</table>

REFERENCE "The values identified in the above table for BUFRa and BUFRs can be found in WMO Binary Code form FM 94 BUFR Table B table reference descriptor 0 20 003."

 ::= { essNtcipPrecip 6}

3.8.10 Ice Deposit (Thickness)

essIceThickness OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS optional
DESCRIPTION "Indicates the thickness of the ice in millimeters. The value 65535 shall indicate an error condition or missing value."

 ::= { essNtcipPrecip 7}

3.8.11 Precipitation Start Time

essPrecipitationStartTime OBJECT-TYPE
SYNTAX INTEGER (0..4294967295)
ACCESS read-only
STATUS mandatory
DESCRIPTION "The time at which the most recent precipitation event began, measured in seconds since 00:00:00 January 1, 1970 UTC. As this standard has been developed long after 1970, a value of 0 for the time should indicate to the management station that the data received is suspect."

 ::= { essNtcipPrecip 8}

3.8.12 Precipitation End Time

essPrecipitationEndTime OBJECT-TYPE
SYNTAX INTEGER (0..4294967295)
ACCESS read-only
STATUS mandatory
DESCRIPTION "The time at which the most recently completed precipitation event ended, measured in seconds since 00:00:00 January 1, 1970 UTC. As this standard has been developed long after 1970, a value of 0 for the time should indicate to the management station that the data received is suspect."

 ::= { essNtcipPrecip 9}
3.8.13 Total Precipitation Past One Hour

essPrecipitationOneHour OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION "The total water equivalent precipitation over the hour preceding the observation in tenths of kilograms per square meter (for rain, this is approximately tenths of millimeters). A value of 65535 shall indicate an error condition or missing value."
REFERENCE "WMO Binary Code form FM 94 BUFR Table B table reference descriptor 0 13 019."
 ::= { essBufrPrecip 19}

3.8.14 Total Precipitation Past Three Hours

essPrecipitationThreeHours OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION "The total water equivalent precipitation over the three hours preceding the observation in tenths of kilograms per square meter (for rain, this is approximately tenths of millimeters). A value of 65535 shall indicate an error condition or missing value."
REFERENCE "WMO Binary Code form FM 94 BUFR Table B table reference descriptor 0 13 020."
 ::= { essBufrPrecip 20}

3.8.15 Total Precipitation Past Six Hours

essPrecipitationSixHours OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION "The total water equivalent precipitation over the six hours preceding the observation in tenths of kilograms per square meter (for rain, this is approximately tenths of millimeters). A value of 65535 shall indicate an error condition or missing value."
REFERENCE "WMO Binary Code form FM 94 BUFR Table B table reference descriptor 0 13 021."
 ::= { essBufrPrecip 21}

3.8.16 Total Precipitation Past Twelve Hours

essPrecipitationTwelveHours OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION "The total water equivalent precipitation over the twelve hours preceding the observation in tenths of kilograms per square meter (for rain, this is approximately to tenths of millimeters). A value of 65535 shall indicate an error condition or missing value."
REFERENCE "WMO Binary Code form FM 94 BUFR Table B table reference descriptor 0 13 022."
 ::= { essBufrPrecip 22}

3.8.17 Total Precipitation Past Twenty-Four Hours

essPrecipitation24Hours OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION "The total water equivalent precipitation over the twenty-four hours preceding the observation in tenths of kilograms per square meter (for rain, this is equivalent to tenths of millimeters). A value of 65535 shall indicate an error condition or missing value."
3.9 RADIATION OBJECTS

-- Contains objects used to describe the data that is collected by the pavement surface sensor.

essBufrRadiation OBJECT IDENTIFIER ::= {essBufr 14}
essNtcipRadiation OBJECT IDENTIFIER ::= {essNtcip 7}

3.9.1.1 Solar Radiation

essSolarRadiation OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION "The direct solar radiation integrated over the 24 hours preceding the observation in Joules per square meter. A value of 65535 shall indicate a missing value."
REFERENCE "WMO Binary Code form FM 94 BUFR Table B table reference descriptor 0 14 024."
::= {essBufrRadiation 24}

3.9.1.2 Total Sun

essTotalSun OBJECT-TYPE
SYNTAX INTEGER (0..1441)
ACCESS read-only
STATUS mandatory
DESCRIPTION "The total amount of sunshine in minutes over the 24 hour period preceding the observation. A value of 1441 shall indicate a missing value."
REFERENCE "WMO Binary Code form FM 94 BUFR Table B table reference descriptor 0 14 031."
::= {essBufrRadiation 31}

3.9.2 Cloud Cover Situation

essCloudSituation OBJECT-TYPE
SYNTAX INTEGER { overcast (1),
 cloudy (2),
 partlyCloudy (3),
 mostlyClear (4),
 clear (5)}
ACCESS read-only
STATUS mandatory
DESCRIPTION "Describes the amount of cloud cover. The associated percentages of cloud cover are indicated to identify the differences between the defined values. Defined values are:

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
<th>Percent Cloud Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Overcast</td>
<td>100 %</td>
</tr>
<tr>
<td>2</td>
<td>Mostly cloudy</td>
<td>62.5 % - 99 %</td>
</tr>
<tr>
<td>3</td>
<td>Partly cloudy</td>
<td>37.5 % - 62.4 %</td>
</tr>
<tr>
<td>4</td>
<td>Mostly sunny</td>
<td>1 % - 37.4 %</td>
</tr>
<tr>
<td>5</td>
<td>Clear skies</td>
<td>0 %</td>
</tr>
</tbody>
</table>

::= {essNtcipRadiation 1}

3.10 VISIBILITY DATA OBJECTS

-- Contains objects used to describe the visibility data that is collected by the ess.

essNtcipVisibility OBJECT IDENTIFIER ::= {essNtcip 8}

3.10.1 Visibility Parameter

essVisibility OBJECT-TYPE
SYNTAX INTEGER (0..1000001)
ACCESS read-only
STATUS mandatory
DESCRIPTION "Surface visibility measured in one tenth of a meter. The value 1000001 shall indicate an error condition or missing value."
REFERENCE "The value for WMO Binary Code form FM 94 BUFR Table B table reference descriptor 0 20 001 is given by this value divided by 100."
::= { essNtcipVisibility 1}

3.10.2 Visibility Situation

essVisibilitySituation OBJECT-TYPE
SYNTAX INTEGER { other (1),
unknown (2),
clear (3),
fogNotPatchy (4),
patchyFog (5),
blowingSnow (6),
smoke (7),
seaSpray (8),
vehicleSpray (9),
blowingDustOrSand (10),
sunGlare (11),
swarmsOfInsects (12)}
ACCESS read-only
STATUS mandatory
DESCRIPTION "Describes the travel environment in terms of visibility. If one exists, the corresponding BUFR value is indicated for staffed (BUFRs) and automated (BUFRa) stations. The indicated value can be found in the BUFR Table referenced below. Defined values are:

<table>
<thead>
<tr>
<th>Range</th>
<th>BUFRs</th>
<th>BUFRa</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>other visibility anomaly</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>unknown</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>100</td>
<td>clear</td>
</tr>
<tr>
<td>4</td>
<td>44</td>
<td>130</td>
<td>Fog - not patchy</td>
</tr>
<tr>
<td>5</td>
<td>41</td>
<td>131</td>
<td>Patchy fog</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>127</td>
<td>Blowing snow</td>
</tr>
<tr>
<td>7</td>
<td>04</td>
<td>104</td>
<td>Smoke</td>
</tr>
<tr>
<td>8</td>
<td>07</td>
<td>207</td>
<td>Sea Spray</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>Vehicle Spray</td>
</tr>
<tr>
<td>10</td>
<td>31</td>
<td>127</td>
<td>Blowing dust or sand</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>sun glare</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>Swarms of insects</td>
</tr>
</tbody>
</table>

REFERENCE "The values identified in the above table for BUFRa and BUFRs can be found in WMO Binary Code form FM 94 BUFR Table B table reference descriptor 0 20 003."
::= { essNtcipVisibility 3}

3.11 PAVEMENT SENSOR OBJECTS

-- Contains objects used to describe the data that is collected by the pavement surface sensor.
essNtcipPavement OBJECT IDENTIFIER ::= {essNtcip 9}

3.11.1 Number of Pavement Sensors

numEssPavementSensors OBJECT-TYPE
SYNTAX INTEGER (0..255)
ACCESS read-only
STATUS mandatory
DESCRIPTION “Indicates the number of entries in the pavement sensor table.”
::= {essNtcipPavement 1}

3.11.2 Pavement Sensor Table

essPavementSensorTable OBJECT-TYPE
SYNTAX SEQUENCE OF EssPavementSensorEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION “Table containing the pavement sensor data fields.”
::= {essNtcipPavement 2}

essPavementSensorEntry OBJECT-TYPE
SYNTAX EssPavementSensorEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION “Parameters for specific pavement sensor data fields.”
INDEX {essPavementSensorIndex}
::= {essPavementSensorTable 1}

EssPavementSensorEntry ::= SEQUENCE {
essPavementSensorIndex INTEGER,
essPavementSensorLocation DisplayString,
essPavementType INTEGER,
essPavementElevation INTEGER,
essPavementExposure INTEGER,
essPavementSensorType INTEGER,
essSurfaceStatus INTEGER,
essSurfaceTemperature INTEGER,
essPavementTemperature INTEGER,
essSurfaceWaterDepth INTEGER,
essSurfaceSalinity INTEGER,
essSurfaceConductivity INTEGER,
essSurfaceFreezePoint INTEGER,
essSurfaceBlackIceSignal INTEGER,
essPavementSensorError INTEGER}

3.11.2.1 Pavement Sensor Index

essPavementSensorIndex OBJECT-TYPE
SYNTAX INTEGER (1..255)
ACCESS read-only
STATUS mandatory
DESCRIPTION “Enumerated list of row entries that will provide surface sensor data.”
::= {essPavementSensorEntry 1}

3.11.2.2 Pavement Sensor Location

essPavementSensorLocation OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-write
STATUS mandatory
DESCRIPTION “A textual string indicating the location of the pavement sensor.”
::= {essPavementSensorEntry 2}

-- We have contacted the LRMS group to express a need for a better mechanism for
-- defining this location down to the lane level.
3.11.2.3 Pavement Type

```
essPavementType OBJECT-TYPE
SYNTAX INTEGER { other (1),
    unknown (2),
    asphalt (3),
    openGradedAsphalt (4),
    concrete (5),
    steelBridge (6),
    concreteBridge (7),
    asphaltOverlayBridge (8),
    timberBridge (9) }
ACCESS read-write
STATUS mandatory
DESCRIPTION "Indicates the type of pavement on the roadway.
other   a different type of bridge deck
unknown  the data was never recorded in the system
asphalt  asphalt pavement on ground
concrete  concrete pavement on ground
steelBridge concrete  a concrete driving surface on a steel girder bridge
steelBridgeAsphalt  an asphalt driving surface on a steel girder bridge
steelBridge  a steel lattice driving surface on the bridge
concreteBridge  a concrete driving surface on a concrete bridge
concreteBridgeAsphalt  an asphalt overlay driving surface on a concrete bridge
timberBridge  a wooden deck driving surface on the bridge"
::= { essPavementSensorEntry 3}
```

3.11.2.4 Pavement Elevation

```
essPavementElevation OBJECT-TYPE
SYNTAX INTEGER (-1000..1001)
ACCESS read-only
STATUS mandatory
DESCRIPTION "The elevation of the street surface in meters with respect to the essReferenceHeight.
The value 1001 shall indicate a missing value."
::= { essPavementSensorEntry 4}
```

3.11.2.5 Pavement Exposure

```
essPavementExposure OBJECT-TYPE
SYNTAX INTEGER (0..101)
ACCESS read-write
STATUS mandatory
DESCRIPTION "Indicates a very rough percentage of the solar energy which will directly hit the sensor.
A value of 100 indicates a fully visible sky.  A value of 101 shall indicate a missing value."
::= { essPavementSensorEntry 5}
```

3.11.2.6 Pavement Sensor Type

```
essPavementSensorType OBJECT-TYPE
SYNTAX INTEGER { other (1),
    contactPassive (2),
    contactActive (3),
    infrared (4),
    radar (5),
    vibrating (6),
    microwave (7)}
ACCESS read-only
```
3.11.2.7 Surface Status

essSurfaceStatus OBJECT-TYPE
SYNTAX INTEGER { other (1),
 error (2),
 dry (3),
 traceMoisture (4),
 wet (5),
 chemicallyWet (6),
 iceWarning (7),
 iceWatch (8),
 snowWarning (9),
 snowWatch (10),
 absorption (11),
 dew (12),
 frost (13),
 absorptionAtDewpoint (14) }
ACCESS read-only
STATUS mandatory
DESCRIPTION "A value indicating the pavement surface status."
::= { essPavementSensorEntry 7}

3.11.2.8 Surface Temperature

essSurfaceTemperature OBJECT-TYPE
SYNTAX INTEGER (-1000..1001)
ACCESS read-only
STATUS mandatory
DESCRIPTION "The current pavement surface temperature in tenths of degrees Celsius. The value 1001 shall indicate an error condition or missing value."
::= { essPavementSensorEntry 8}

3.11.2.9 Pavement Temperature

essPavementTemperature OBJECT-TYPE
SYNTAX INTEGER (-1000..1001)
ACCESS read-only
STATUS optional
DESCRIPTION "The current pavement temperature 2-10 cm below the pavement surface in tenths of degrees Celsius. The value 1001 shall indicate an error condition or missing value."
::= { essPavementSensorEntry 9}

3.11.2.10 Surface Water Depth

essSurfaceWaterDepth OBJECT-TYPE
SYNTAX INTEGER (0..255)
ACCESS read-only
STATUS optional
DESCRIPTION "The current depth of water on the surface of the roadway measured in millimeters. The value 255 shall indicate an error condition or missing value."
::= { essPavementSensorEntry 10}

3.11.2.11 Surface Salinity

essSurfaceSalinity OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS optional
DESCRIPTION “The pavement salinity in parts per one hundred thousand. The value 65535 shall indicate an error condition or missing value.”
::= { essPavementSensorEntry 11}

-- A comment has been received to make both the surface salinity and surface conductivity optional -- objects. This issue will be discussed by the WG with any other comments received during balloting.

3.11.2.12 Surface Conductivity

dessSurfaceConductivity OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS optional
DESCRIPTION “Indicates the conductance of the ice/liquid mixture on the pavement as detected by the sensor, in mhos, which is the inverse of ohms. The value 65535 shall indicate an error condition or missing value.”
::= { essPavementSensorEntry 12}

3.11.2.13 Pavement Freezing Point

dessSurfaceFreezePoint OBJECT-TYPE
SYNTAX INTEGER (-1000..1001)
ACCESS read-only
STATUS optional
DESCRIPTION “The temperature in tenths of degrees Celsius at which the existing solution on the roadway will freeze. The value 1001 shall indicate an error condition or missing value.”
::= { essPavementSensorEntry 13}

3.11.2.14 Surface Black Ice Signal

dessSurfaceBlackIceSignal OBJECT-TYPE
SYNTAX INTEGER {other (1),
nolice (2),
blackIce (3),
detectorError (4) }
ACCESS read-only
STATUS optional
DESCRIPTION “A value indicating if Black Ice is detected by the sensor.”
::= { essPavementSensorEntry 14}

3.11.2.15 Surface Sensor Error

dessPavementSensorError OBJECT-TYPE
SYNTAX INTEGER {other (1),
one (2),
noResponse (3),
cutCable (4),
shortCircuit (5),
dirtyLens (6) }
ACCESS read-only
STATUS mandatory
DESCRIPTION “A value indicating the type of pavement sensor error.”
::= { essPavementSensorEntry 15}

3.11.3 Number of Sub-Surface Sensors
numEssSubSurfaceSensors OBJECT-TYPE
SYNTAX INTEGER (0..255)
ACCESS read-only
STATUS mandatory
DESCRIPTION "Indicates the number of entries in the Sub-Surface Sensor Table."
::= {essNtcpPavement 3}

3.11.4 Sub-Surface Sensor Table
essSubSurfaceSensorTable OBJECT-TYPE
SYNTAX SEQUENCE OF EssSubSurfaceSensorEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION "Table containing the surface sensor data fields."
::= {essNtcpPavement 4}

EssSubSurfaceSensorEntry OBJECT-TYPE
SYNTAX EssSubSurfaceSensorEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION "Parameters for specific sub-surface sensor data fields."
INDEX {essSubSurfaceSensorIndex}
::= {essSubSurfaceSensorTable 1}

EssSubSurfaceSensorEntry ::= SEQUENCE {
 essSubSurfaceSensorIndex INTEGER,
 essSubSurfaceSensorLocation DisplayString,
 essSubSurfaceType INTEGER,
 essSubSurfaceSensorDepth INTEGER,
 essSubSurfaceTemperature INTEGER,
 essSubSurfaceMoisture INTEGER,
 essSubSurfaceSensorError INTEGER}

3.11.4.1 Sub-Surface Sensor Index
essSubSurfaceSensorIndex OBJECT-TYPE
SYNTAX INTEGER (1..255)
ACCESS read-only
STATUS mandatory
DESCRIPTION "Enumerated list of row entries that will provide surface sensor data."
::= { essSubSurfaceSensorEntry 1}

3.11.4.2 Sub-Surface Sensor Location
essSubSurfaceSensorLocation OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-write
STATUS mandatory
DESCRIPTION "A textual string indicating the location of the subsurface sensor."
::= { essSubSurfaceSensorEntry 2}

3.11.4.3 Sub-Surface Type
essSubSurfaceType OBJECT-TYPE
SYNTAX INTEGER {other (1),
 unknown (2),
 concrete (3),
 asphalt (4),
 openGradedAsphalt (5),}
3.11.4.4 Sub-Surface Sensor Depth

```
essSubSurfaceSensorDepth
```

SYNTAX INTEGER (0..1001)

ACCESS read-write

DESCRIPTION “Depth of sub-surface sensor in centimeters below the pavement surface. The value 1001 shall indicate an error condition or missing value.”

::= {essSubSurfaceSensorEntry 4}

3.11.4.5 Sub-Surface Temperature

```
essSubSurfaceTemperature
```

SYNTAX INTEGER (-1000..1001)

ACCESS read-only

DESCRIPTION “The current sub-surface temperature in tenths of degrees Celsius. The value 1001 shall indicate an error condition or missing value.”

::= {essSubSurfaceSensorEntry 5}

3.11.4.6 Sub-Surface Moisture

```
essSubSurfaceMoisture
```

SYNTAX INTEGER (0..101)

ACCESS read-only

DESCRIPTION “The sub-surface moisture expressed as a percentage (e.g., 0 indicates dry, 100 indicates saturated). The value 101 indicates an error condition or missing value.”

::= {essSubSurfaceSensorEntry 7}

3.11.4.7 Sub-Surface Sensor Error

```
essSubSurfaceSensorError
```

SYNTAX INTEGER {other (1),
none (2),
noResponse (3),
cutCable (4),
shortCircuit (5)}

ACCESS read-only

DESCRIPTION “A value indicating the type of sensor error.”

::= {essSubSurfaceSensorEntry 8}

3.12 MOBILE PLATFORM OBJECTS

-- This node contains objects which have been developed to facilitate experiments with data that collected -- by mobile platforms (e.g., specially equipped maintenance vehicles).
There has been limited use of mobile ESS platforms within the surface transportation industry and as such these objects should be considered experimental.

It is expected that mobile platforms will use the objects defined above plus these objects.

```plaintext
essoNtcipMobile OBJECT IDENTIFIER ::= {essoNtcip 10}
```

3.12.1 Mobile Friction

```
essoMobileFriction OBJECT-TYPE
SYNTAX INTEGER (0..101)
ACCESS read-only
STATUS mandatory
DESCRIPTION "Indicates measured coefficient of friction in percent. The value 101 shall indicate an error condition or missing value."
::= {essoNtcipMobile 1}
```

3.12.2 Mobile Observation for the State of the Ground

```
essoMobileObservationGroundState OBJECT-TYPE
SYNTAX INTEGER {other (1),
  dry (2),
  moist (3),
  wet (4),
  flooded (5),
  frozen (6),
  glaze (7),
  dustySandy (8),
  veryDry (9),
  icy (10),
  patchyWetSnow (11),
  moderateWetSnowCover (12),
  fullWetSnowCover (13),
  patchyDrySnow (14),
  moderateDrySnowCover (15),
  fullDrySnowCover (16),
  driftingSnow (17),
  unknown (18)}
ACCESS read-only
STATUS mandatory
DESCRIPTION "The prevailing observed ground state of the surrounding environment as determined by the observer. This is an indicator of past weather conditions."
::= {essoNtcipMobile 2}
```

3.12.3 Mobile State of the Pavement

```
essoMobileObservationPavement OBJECT-TYPE
SYNTAX INTEGER {other (1),
  dry (2),
  wet (3),
  puddles (4),
  shallowStandingWater (5),
  shallowFlowingWater (6),
  deepStandingWater (7),
  deepFlowingWater (8),
  dustingFreshSnow (9),
  moderateFreshSnow (10),
  plowedSnow (12),
  slush (13),
```
packedSnowPatches (14),
packedSnow (15),
lightSnowDrifts (16),
moderateSnowDrifts (17),
heavySnowDrifts (18),
frost (19),
icePatches (20),
moderatelyIcy (21),
heavilyIcing (22),
blackIce (23),
sheetIce (24),
frozenSlush (25) }

ACCESS read-only
STATUS mandatory
DESCRIPTION “The prevailing observed conditions on the driving surface as determined by the observer.”
 ::= { essNtcipMobile 3}

3.13 PAVEMENT TREATMENT OBJECTS

-- This node contains objects which have been developed to monitor the various types and amounts of
-- treatments that are spread on the pavement surface.
essNtcipTreatment OBJECT IDENTIFIER ::= { essNtcip 11 }

3.13.1 Number of Treatments
numEssTreatments OBJECT-TYPE
SYNTAX INTEGER (0..255)
ACCESS read-only
STATUS mandatory
DESCRIPTION "Indicates the number of entries in the Pavement Treatment Table."
 ::= {essNtcipTreatment 1}

3.13.2 Pavement Treatment Table
essPavementTreatmentTable OBJECT-TYPE
SYNTAX SEQUENCE OF EssPavementTreatmentEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION "Table containing the pavement treatment data fields."
 ::= {essNtcipTreatment 2}

essPavementTreatmentEntry OBJECT-TYPE
SYNTAX EssPavementTreatmentEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION "Parameters for specific pavement treatment data fields."
INDEX {essPavementTreatmentIndex}
 ::= {essPavementTreatmentTable 1}

EssPavementTreatmentEntry ::= SEQUENCE {
 essPavementTreatmentIndex INTEGER,
 essPaveTreatProductType INTEGER,
 essPaveTreatProductForm INTEGER,
 essPercentProductMix INTEGER}

3.13.2.1 Pavement Treatment Index
essPavementTreatmentIndex OBJECT-TYPE
SYNTAX INTEGER (1..255)
ACCESS read-only
STATUS mandatory
DESCRIPTION "Enumerated list of row entries that will provide pavement treatment data."
::= { essPavementTreatmentEntry 1}

3.13.2.2 Pavement Treatment Product Type

essPaveTreatProductType OBJECT-TYPE
SYNTAX INTEGER {other (1),
sand (2),
dirt (3),
gravel (4),
cinders (5),
water (6),
enhancedSalts (7),
naCl (8),
caCl (9),
mgCl (10),
cMA (11),
kAC (12),
naFormate (13),
naA (14) }

ACCESS read-only
STATUS mandatory
DESCRIPTION "Indicates the type of treatment being applied to the road. An enhanced definition of some of the values are as follows:
other - any other type of treatment
water - used as a diluting agent
cMA - Calcium-Magnesium Acetate
kAC - Potassium-Magnesium Acetate
naFormate - Sodium Formate
naA - Sodium Acetate"
::= { essPavementTreatmentEntry 2}

3.13.2.3 Treatment Product Form

essPaveTreatProductForm OBJECT-TYPE
SYNTAX INTEGER { other (1),
dry (2),
prewet (3),
liquid (4)}

ACCESS read-only
STATUS mandatory
DESCRIPTION "Indicates the condition of the treatment being applied to the road."
::= { essPavementTreatmentEntry 3}

3.13.2.4 Percentage of Treatment Type in Mix

essPercentProductMix OBJECT-TYPE
SYNTAX INTEGER (0..100)
ACCESS read-only
STATUS mandatory
DESCRIPTION "Indicates the percentage of the total application mix by weight that is of the type specified in essPaveTreatProductType. The sum of these percentages within the total mixture shall equal 100."
::= { essPavementTreatmentEntry 4}
3.13.3 Treatment Amount

```
essPaveTreatmentAmount OBJECT-TYPE
SYNTAX INTEGER (0..255)
ACCESS read-only
STATUS mandatory
DESCRIPTION "Indicates quantity of the treatment being applied in kilograms per lane kilometer."
 ::= { essNtcpTreatment 3}
```

3.13.4 Treatment Width

```
essPaveTreatmentWidth OBJECT-TYPE
SYNTAX INTEGER (0..255)
ACCESS read-only
STATUS mandatory
DESCRIPTION "Indicates the width of the spread of treatment in meters."
 ::= { essNtcpTreatment 4}
```

3.14 AIR QUALITY PARAMETERS

```
essNtcpAirQuality OBJECT IDENTIFIER ::= { essNtcp 12 }
-- This node contains objects used for monitoring air quality conditions.

-- A comment has been received to add error conditions to these objects as per previous objects. This
-- was the original intent and this modification will be discussed by the WG along with any other
-- comments
-- received during balloting.
```

3.14.1 Carbon Monoxide Parameter

```
essCO OBJECT-TYPE
SYNTAX INTEGER (0..255)
ACCESS read-only
STATUS mandatory
DESCRIPTION "The concentration of carbon monoxide in the air, measured in parts per million. The
value 255 shall indicate an error condition or missing value."
 ::= {essNtcpAirQuality 1}
```

3.14.2 Carbon Dioxide Parameter

```
essCO2 OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION "The concentration of carbon dioxide in the air, measured in parts per billion. The value
65535 shall indicate an error condition or missing value."
 ::= {essNtcpAirQuality 2}
```

3.14.3 Nitrous Oxide Parameter

```
essNO OBJECT-TYPE
SYNTAX INTEGER (0..255)
ACCESS read-only
STATUS mandatory
DESCRIPTION "The concentration of nitrous oxide in the air, measured in parts per million. The value
255 shall indicate an error condition or missing value."
 ::= {essNtcpAirQuality 3}
```

3.14.4 Nitrogen Dioxide Parameter

```
essNO2 OBJECT-TYPE
SYNTAX INTEGER (0..255)
ACCESS read-only
STATUS mandatory
DESCRIPTION "The concentration of nitrogen dioxide in the air, measured in parts per billion. The value 255 shall indicate an error condition or missing value."
::= {essNtcpAirQuality 4}

3.14.5 Sulfur Dioxide Parameter
essSO2 OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION "The concentration of sulfur dioxide in the air, measured in parts per billion. The value 65535 shall indicate an error condition or missing value."
::= {essNtcpAirQuality 5}

3.14.6 Ozone Parameter
essO3 OBJECT-TYPE
SYNTAX INTEGER (0..255)
ACCESS read-only
STATUS mandatory
DESCRIPTION "The concentration of ozone in the air, measured in parts per one hundred billion. The value 255 shall indicate an error condition or missing value."
::= {essNtcpAirQuality 6}

3.14.7 Particulate Matter Parameter
essPM10 OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION "The concentration of small particulate matter of 10 micrometers or less in diameter in the air, measured in micrograms per cubic meter. The value 65535 shall indicate an error condition or missing value."
::= {essNtcpAirQuality 7}

3.15 WATER QUALITY PARAMETERS

essNtcpWaterQuality OBJECT IDENTIFIER ::= { essNtcp 13 }
-- This node contains objects used for monitoring water quality conditions. Appropriate agencies have
-- been contacted to assist in the development of these objects for future versions.
Section 4
CONFORMANCE

The conformance groups have been developed to be used as minimum requirements to claim compliance to the standard. There may be varying levels of compliance to the standard as there are numerous devices that have varying levels of performance. Therefore, hierarchical levels of conformance for certain data have been developed. These levels of conformance have been defined as Basic, Standard, Enhanced, and Emerging. Basic Conformance identifies the object(s) that must be supported to claim the lowest level of compliance to the standard. Standard Conformance identifies the object(s) that are supported by current technology. These objects must be supported to claim compliance at the Standard Conformance level.

The Enhanced Conformance level identifies new technology that will become common in the near future but are currently used in some areas. To claim compliance at the Enhanced Conformance level, the object(s) listed at this level must be supported. The Emerging Conformance level identifies that object(s) that must be supported to claim the highest level of compliance to the standard. The Emerging Conformance level identifies the object(s) that are under development or are being tested, but not being used. These objects are considered to be enhancements that may not be available in the near future.

4.1 CONFORMANCE STATEMENT

ESS devices shall adhere to the conformance requirements specified in Table 4-1 as a minimum to claim compliance to this standard. Additional objects or groups may be supported without being non-compliant with ESS objects or NTCIP.

Minimum and maximum ranges of objects that differ from the values of the object’s SYNTAX field may be enforced by an application running on a device.

A device may enforce range limits within the bounds specified by the values of the object’s SYNTAX field without being categorized as non-compliant with ESS objects or NTCIP; however, it may be categorized as non-compliant for other reasons. For example, a temperature sensor which only supports a range of -40°C to 100°C is compliant if all other requirements are met.

A device may support a subset of defined values for an enumerated object without being categorized as non-compliant with ESS objects or NTCIP; however, it may be categorized as non-compliant for other reasons. For example, a visibility sensor which can only distinguish between fog and other visual anomalies is compliant if all other requirements are met.
### Table 4-1: Conformance Table

<table>
<thead>
<tr>
<th>CONFORMANCE GROUP</th>
<th>REFERENCE</th>
<th>CONFORMANCE REQUIREMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration</td>
<td>NTCIP 1201</td>
<td>mandatory</td>
</tr>
<tr>
<td>Database Management</td>
<td>NTCIP 1201</td>
<td>optional</td>
</tr>
<tr>
<td>Time Management</td>
<td>NTCIP 1201</td>
<td>mandatory</td>
</tr>
<tr>
<td>Timebase Event Schedule</td>
<td>NTCIP 1201</td>
<td>optional</td>
</tr>
<tr>
<td>Report</td>
<td>NTCIP 1201</td>
<td>optional</td>
</tr>
<tr>
<td>STMF</td>
<td>NTCIP 1201</td>
<td>optional</td>
</tr>
<tr>
<td>PMPP</td>
<td>NTCIP 1201</td>
<td>optional</td>
</tr>
<tr>
<td>ESS Configuration</td>
<td>NTCIP 1204</td>
<td>mandatory</td>
</tr>
<tr>
<td>ESS Location</td>
<td>NTCIP 1204</td>
<td>mandatory</td>
</tr>
<tr>
<td>Pressure</td>
<td>NTCIP 1204</td>
<td>optional</td>
</tr>
<tr>
<td>Wind Data</td>
<td>NTCIP 1204</td>
<td>optional</td>
</tr>
<tr>
<td>Mobile Wind Data</td>
<td>NTCIP 1204</td>
<td>optional</td>
</tr>
<tr>
<td>Basic Temperature Data</td>
<td>NTCIP 1204</td>
<td>optional</td>
</tr>
<tr>
<td>Enhanced Temperature Data</td>
<td>NTCIP 1204</td>
<td>optional</td>
</tr>
<tr>
<td>Basic Precipitation Data</td>
<td>NTCIP 1204</td>
<td>optional</td>
</tr>
<tr>
<td>Standard Precipitation Data</td>
<td>NTCIP 1204</td>
<td>optional</td>
</tr>
<tr>
<td>Enhanced Precipitation Data</td>
<td>NTCIP 1204</td>
<td>optional</td>
</tr>
<tr>
<td>Emerging Precipitation Data</td>
<td>NTCIP 1204</td>
<td>optional</td>
</tr>
<tr>
<td>Solar Radiation</td>
<td>NTCIP 1204</td>
<td>optional</td>
</tr>
<tr>
<td>Visibility Data</td>
<td>NTCIP 1204</td>
<td>optional</td>
</tr>
<tr>
<td>Standard Pavement Sensor Data</td>
<td>NTCIP 1204</td>
<td>optional</td>
</tr>
<tr>
<td>Enhanced Pavement Sensor Data</td>
<td>NTCIP 1204</td>
<td>optional</td>
</tr>
<tr>
<td>Standard Sub-Surface Sensor Data</td>
<td>NTCIP 1204</td>
<td>optional</td>
</tr>
<tr>
<td>Enhanced Sub-Surface Sensor Data</td>
<td>NTCIP 1204</td>
<td>optional</td>
</tr>
<tr>
<td>Emerging Mobile Platform</td>
<td>NTCIP 1204</td>
<td>optional</td>
</tr>
<tr>
<td>Pavement Treatment</td>
<td>NTCIP 1204</td>
<td>optional</td>
</tr>
<tr>
<td>Air Quality</td>
<td>NTCIP 1204</td>
<td>optional</td>
</tr>
<tr>
<td>Staffed Station</td>
<td>NTCIP 1204</td>
<td>optional</td>
</tr>
</tbody>
</table>

For additional information in producing procurement specifications, visit the NTCIP Home Page at http://www.ntcip.org.

### 4.2 CONFORMANCE GROUPS

A Conformance Group is defined in NTCIP 1101 Simple Transportation Management Framework (STMF), clause 3.3.5, as a basic unit of conformance.

A Conformance Statement refers to Conformance Groups and defines them as being either mandatory or optional. For a device to claim compliance to a Conformance Statement, it must be compliant with each of the mandatory Conformance Groups as defined within that Conformance Statement.

For a device to claim compliance to a Conformance Group, it must be compliant with each of the mandatory tables and mandatory objects as defined within that Conformance Group.

For a device to claim compliance with a table, it must be compliant with each of the mandatory objects included in the table.

For a device to claim compliance to an object, it must support at least one value of the object and all indicated functionality for the values it supports.
A device may support any optional feature.

### Table 4-2: Object Support Requirements

<table>
<thead>
<tr>
<th>OBJECT STATUS</th>
<th>TABLE STATUS</th>
<th>CONFORMANCE GROUP STATUS (IF ANY)</th>
<th>OBJECT SUPPORT</th>
</tr>
</thead>
<tbody>
<tr>
<td>mandatory</td>
<td>Mandatory</td>
<td>mandatory</td>
<td>mandatory</td>
</tr>
<tr>
<td>mandatory</td>
<td>Mandatory</td>
<td>optional</td>
<td>mandatory, if conformance group is supported</td>
</tr>
<tr>
<td>mandatory</td>
<td>Optional</td>
<td>mandatory</td>
<td>mandatory, if table is supported</td>
</tr>
<tr>
<td>mandatory</td>
<td>Optional</td>
<td>optional</td>
<td>mandatory, if both the conformance group and table are supported</td>
</tr>
<tr>
<td>optional</td>
<td>Mandatory</td>
<td>mandatory</td>
<td>optional</td>
</tr>
<tr>
<td>optional</td>
<td>Mandatory</td>
<td>optional</td>
<td>optional</td>
</tr>
<tr>
<td>optional</td>
<td>Optional</td>
<td>mandatory</td>
<td>optional</td>
</tr>
<tr>
<td>optional</td>
<td>Optional</td>
<td>optional</td>
<td>optional</td>
</tr>
</tbody>
</table>

The Conformance Group definitions for Environmental Sensor Station (ESS) are defined in the following Clauses. An ESS may have multiple capabilities; thus, Conformance Groups are defined for each capability.

#### 4.2.1 ESS Configuration Conformance Group

The ESS Configuration Conformance Group consists of a variety of ESS objects related to general configuration information. The ESS Configuration Conformance Group shall consist of the following objects and tables:

<table>
<thead>
<tr>
<th>Object or Table Name</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>essNtcipCategory</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essNtcipSiteDescription</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essTypeOfStation</td>
<td>NTCIP 1204</td>
</tr>
</tbody>
</table>

#### 4.2.2 ESS Location Conformance Group

The ESS Location Conformance Group consists of objects that specify the location of the ESS. The ESS Location Conformance Group shall consist of the following objects:

<table>
<thead>
<tr>
<th>Object or Table Name</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>essLatitude</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essLongitude</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essReferenceHeight</td>
<td>NTCIP 1204</td>
</tr>
</tbody>
</table>

#### 4.2.3 Pressure Conformance Group

The Pressure Conformance Group consists of objects that specify the pressure sensor height and pressure measurement of the ESS. The Pressure Conformance Group shall consist of the following objects:

<table>
<thead>
<tr>
<th>Object or Table Name</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>essPressureHeight</td>
<td>NTCIP 1204</td>
</tr>
</tbody>
</table>
4.2.4 Wind Data Conformance Group
The Wind Data Conformance Group consists of objects that describe the wind sensor elevation and wind data collected by the ESS. The Wind Data Conformance Group shall consist of the following objects:

<table>
<thead>
<tr>
<th>Object or Table Name</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>essWindSensorHeight</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essAvgWindDirection</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essAvgWindSpeed</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essMaxWindGustSpeed</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essMaxWindGustDir</td>
<td>NTCIP 1204</td>
</tr>
</tbody>
</table>

4.2.5 Mobile Wind Data Conformance Group
The Mobile Wind Data Conformance Group consists of objects that describe the wind sensor elevation and wind data collected by a mobile ESS. The Mobile Wind Data Conformance Group shall consist of the following objects:

<table>
<thead>
<tr>
<th>Object or Table Name</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>essWindSituation</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essSpotWindDirection</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essSpotWindSpeed</td>
<td>NTCIP 1204</td>
</tr>
</tbody>
</table>

4.2.6 Basic Temperature Data Conformance Group
The Basic Temperature Data Conformance Group consists of objects that describe the basic temperature data collected by the ESS. The Basic Temperature Data Conformance Group shall consist of the following objects:

<table>
<thead>
<tr>
<th>Object or Table Name</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>essNumTemperatureSensors</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essTemperatureSensorTable</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essTemperatureSensorIndex</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essTemperatureSensorHeight</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essAirTemperature</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essMaxTemp</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essMinTemp</td>
<td>NTCIP 1204</td>
</tr>
</tbody>
</table>

4.2.7 Enhanced Temperature Data Conformance Group
The Enhanced Temperature Data Conformance Group consists of objects that describe the enhanced temperature data collected by the ESS. The Enhanced Temperature Data Conformance Group shall consist of the following objects:

<table>
<thead>
<tr>
<th>Object or Table Name</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>essNumTemperatureSensors</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essTemperatureSensorTable</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essTemperatureSensorIndex</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essTemperatureSensorHeight</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essAirTemperature</td>
<td>NTCIP 1204</td>
</tr>
</tbody>
</table>
### 4.2.8 Basic Precipitation Data Conformance Group

The Basic Precipitation Data Conformance Group consists of objects that describe the precipitation data collected by the ESS. The Basic Precipitation Data Conformance Group shall consist of the following objects:

<table>
<thead>
<tr>
<th>Object or Table Name</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>essPrecipYesNo</td>
<td>NTCIP 1204</td>
</tr>
</tbody>
</table>

### 4.2.9 Standard Precipitation Data Conformance Group

The Standard Precipitation Data Conformance Group consists of objects that describe the precipitation data collected by the ESS. The Standard Precipitation Data Conformance Group shall consist of the following objects:

<table>
<thead>
<tr>
<th>Object or Table Name</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>essPrecipRate</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essPrecipitationStartTime</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essPrecipitationEndTime</td>
<td>NTCIP 1204</td>
</tr>
</tbody>
</table>

### 4.2.10 Enhanced Precipitation Data Conformance Group

The Enhanced Precipitation Data Conformance Group consists of objects that describe the precipitation data collected by the ESS. The Enhanced Precipitation Data Conformance Group shall consist of the following objects:

<table>
<thead>
<tr>
<th>Object or Table Name</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>essPrecipRate</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essPrecipitationStartTime</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essPrecipitationEndTime</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essPrecipitationOneHour</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essPrecipitationThreeHour</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essPrecipitationSixHour</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essPrecipitationTwelveHour</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essPrecipitation24Hours</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essPrecipSituation</td>
<td>NTCIP 1204</td>
</tr>
</tbody>
</table>

### 4.2.11 Emerging Precipitation Data Conformance Group

The Emerging Precipitation Data Conformance Group consists of objects that describe the precipitation data collected by the ESS. The Emerging Precipitation Data Conformance Group shall consist of the following objects:

<table>
<thead>
<tr>
<th>Object or Table Name</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>essPrecipRate</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essPrecipitationStartTime</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essPrecipitationEndTime</td>
<td>NTCIP 1204</td>
</tr>
</tbody>
</table>
4.2.12 Solar Radiation Conformance Group

The Solar Radiation Conformance Group consists of objects that describe the solar radiation data collected by the ESS. The Solar Radiation Conformance Group shall consist of the following objects:

<table>
<thead>
<tr>
<th>Object or Table Name</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>essSolarRadiation</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essSurfaceTotalSun</td>
<td>NTCIP 1204</td>
</tr>
</tbody>
</table>

4.2.13 Visibility Data Conformance Group

The Visibility Data Conformance Group consists of objects that describe the wind data collected by the ESS. The Visibility Data Conformance Group shall consist of the following objects:

<table>
<thead>
<tr>
<th>Object or Table Name</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>essVisibility</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essVisibilitySituation</td>
<td>NTCIP 1204</td>
</tr>
</tbody>
</table>

4.2.14 Standard Pavement Sensor Data Conformance Group

The Standard Pavement Sensor Data Conformance Group consists of objects that describe the standard pavement surface data collected by the ESS. The Standard Pavement Sensor Data Conformance Group shall consist of the following objects:

<table>
<thead>
<tr>
<th>Object or Table Name</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>numEssPavementSensors</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essPavementSensorTable</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essPavementSensorIndex</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essPavementSensorLocation</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essPavementType</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essPavementElevation</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essPavementExposure</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essPavementSensorType</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essSurfaceStatus</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essSurfaceTemperature</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essPavementSensorError</td>
<td>NTCIP 1204</td>
</tr>
</tbody>
</table>

4.2.15 Enhanced Pavement Sensor Data Conformance Group
The Enhanced Pavement Sensor Data Conformance Group consists of objects that describe the standard and enhanced pavement surface data collected by the ESS. A device claiming conformance to the Enhanced Pavement Sensor Data Conformance Group shall support all of the following objects:

<table>
<thead>
<tr>
<th>Object or Table Name</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>numEssPavementSensors</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essPavementSensorTable</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essPavementSensorIndex</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essPavementSensorLocation</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essPavementType</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essPavementElevation</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essPavementExposure</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essPavementSensorType</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essSurfaceStatus</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essSurfaceTemperature</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essPavementSensorError</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essPavementTemperature</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essSurfaceWaterDepth</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essSurfaceFreezePoint</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essSurfaceBlackIceSignal</td>
<td>NTCIP 1204</td>
</tr>
</tbody>
</table>
### 4.2.16 Standard Sub-Surface Sensor Data Conformance Group

The Sub-Surface Sensor Data Conformance Group consists of objects that describe the pavement surface data collected by the ESS. The Sub-Surface Sensor Data Conformance Group shall consist of the following objects:

<table>
<thead>
<tr>
<th>Object or Table Name</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>numEssSubSurfaceSensors</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essSubSurfaceSensorTable</td>
<td>NTCIP 1204</td>
</tr>
</tbody>
</table>

### 4.2.17 Enhanced Sub-Surface Sensor Data Conformance Group

The Enhanced Sub-Surface Sensor Data Conformance Group consists of objects that describe the standard and enhanced sub-surface data collected by the ESS. A device claiming conformance to the Enhanced Sub-Surface Sensor Data Conformance Group shall support all of the Standard Sub-Surface Sensor Data Conformance Group and the following object:

<table>
<thead>
<tr>
<th>Object or Table Name</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>essSubSurfaceMoisture</td>
<td>NTCIP 1204</td>
</tr>
</tbody>
</table>

### 4.2.18 Emerging Mobile Platform Conformance Group

The Emerging Mobile Platform Conformance Group consists of objects that describe the data collected by a mobile ESS. The Mobile Platform Conformance Group shall consist of the following objects:

<table>
<thead>
<tr>
<th>Object or Table Name</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>essVehicleSpeed</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essVehicleBearing</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essVehicleOdometer</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essMobileFriction</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essSpotWindSpeed</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essSpotWindDirection</td>
<td>NTCIP 1204</td>
</tr>
</tbody>
</table>

### 4.2.19 Pavement Treatment Conformance Group

The Pavement Treatment Conformance Group consists of objects that describe the pavement treatment which is being applied by the maintenance vehicle. The Pavement Treatment Conformance Group shall consist of the following objects:

<table>
<thead>
<tr>
<th>Object or Table Name</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>numEssTreatments</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essPavementTreatmentTable</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essPavementTreatmentIndex</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essPaveTreatProductType</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essPaveTreatProductForm</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essPercentProductMix</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essPaveTreatmentAmount</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essPaveTreatmentWidth</td>
<td>NTCIP 1204</td>
</tr>
</tbody>
</table>
4.2.20 Air Quality Conformance Group

The Air Quality Conformance Group consists of objects that describe the air quality data collected by the ESS. The Air Quality Conformance Group shall consist of the following objects:

<table>
<thead>
<tr>
<th>Object or Table Name</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>essCO</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essCO2</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essNO</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essNO2</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essSO2</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essO3</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essPM10</td>
<td>NTCIP 1204</td>
</tr>
</tbody>
</table>

4.2.21 Staffed Station Conformance Group

The Staffed Station Conformance Group consists of objects that describe those data which can be provided from staffed ESS. The Staffed Station Conformance Group shall consist of the following objects:

<table>
<thead>
<tr>
<th>Object or Table Name</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>essWindSituation</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essWaterDepth</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essRoadwaySnowDepth</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essRoadwaySnowPackDepth</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essIceThickness</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essAdjacentSnowDepth</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essPrecipSituation</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essCloudSituation</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essVisibilitySituation</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essMobileObservationGroundState</td>
<td>NTCIP 1204</td>
</tr>
<tr>
<td>essMobileObservationPavement</td>
<td>NTCIP 1204</td>
</tr>
</tbody>
</table>