

NTCIP 1103 v03.52
Page 4

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

interoperate The ability of two or more systems or components to exchange
information and use the information that has been exchanged.

Note: See IEEE Std. 610.12-1990: IEEE Standard Glossary of Software
Engineering Terminology.

IP address A 32-bit quantity used to represent a point of attachment in an internet.

Note: Sometimes referred to, simply, as “IP.”

management
information base (MIB)

A structured collection or database of related managed objects defined
using Abstract Syntax Notation One (ASN.1).

Note: See NTCIP 8004 v02.

manager The entity that sends commands to agents and processes their
responses.

Note: Synonymous with “management station”.

management station An entity that sends commands to agents and processes their responses.

Note: Synonymous with “manager”.

meta A word denoting a description that is one level of abstraction above the
entity being described.

MIB view A set of objects within a MIB. Different MIB views may be defined for each
community name. A set of objects do not need to be confined to a single
node on the ISO global naming tree.

network A collection of subnetworks connected by intermediate systems and
populated by end systems.

network layer That portion of an OSI (Open Systems Interconnection) system
responsible for data transfer across the network, independent of both the
media comprising the underlying subnetworks and the topology of those
subnetworks.

Object A specific instance of an object type that may be managed by SNMP.
Thus, an object may be either a data element or a data frame.

OBJECT IDENTIFIER
(Object Identifier)

A unique name (identifier) that is associated with each type of object in a
Management Information Base (MIB). This is a defined ASN.1 type.

NTCIP 1103 v03.52
Page 5

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

object type

A data structure used to describe the attribute or properties of an object or
a group of objects. Also, a classification of one or more objects that share
a common definition and representational form. Synonymous with the
object-oriented term “class.”
Note: Managed devices frequently contain tables of information; if each
row is considered a record, then each column would be an object type and
each cell would be an object (i.e., an instance of the object type as defined
by the column heading). For objects that are not contained in tables, there
is a one-to-one relationship between object type and object; the only
difference is that the object type is the abstract concept whereas the
object is the precise instance.
Note: The definition of each object type includes a name and a syntax; the
encoding of the object is defined by applying the protocol-specific rules to
the logical syntax as defined in ASN.1.
Note: SNMP requires the contents of an object to be a simple ASN.1
Type; however, NTCIP has defined the concept of a Block Object, which is
a serialized Data Frame, to circumvent this limitation of SNMP and to
improve encoding efficiencies. Thus, within NTCIP, the term object may
either refer to a data element or a data frame.

obsolete In the context of a MIB, an object STATUS value that indicates the
definition is no longer valid, was found to be flawed, was redundant, or
was not useful.

Note: In the next (or some future) edition of a standard, the object or group
with a STATUS value of “obsolete” may be removed. This definition is
modified from “Understanding SNMP MIBS.” This term is defined in
NTCIP 8004 v02.

protocol data unit
(PDU)

protocol A specific set of rules, procedures, and conventions defining the format
and timing of data transmissions between devices that is required to be
accepted and used to understand each other.

Referenced Object An object instance that is supported by a device and that may be
referenced from a dynamic object via the use of the dynObjVariables field.

Response Time The time between the receipt of the last byte of the request and the start
of the transmission of the first byte of the response.

Simple Network
Management Protocol
(SNMP)

A communications protocol developed by the Internet Engineering Task
Force, used for configuration and monitoring of network devices.

Simple Transportation
Management
Framework (STMF)

Describes the organization of the information within devices and the
methods of retrieving or modifying any information within the device.
STMF also explains how to generate and utilize computer readable
information organization descriptions.

subnet/subnetwork A physical network within a network on which all devices share the same
physical media.

trap A particular form of a data packet that provides pre-defined (dynamically
configured) information to requests from a management station based on
“events” within the device. These particular data packets are initialized
and, potentially, transmitted (depending on the transmission media)
without a request from a management station.

NTCIP 1103 v03.52
Page 9

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

get request, set request, etc.). The loworder nibble is then used to identify whether the message is a fixed
message (i.e., SFMP, indicated by the value of zero), or one of the 13 dynamic objects (i.e., STMP,
indicated by a value of 1 through 13). The specific mapping of the first byte value is defined in Table 1.

Table 1 TMP Protocol Mapping

Protocol Value
SNMP—All SNMP Messages (including traps) 0x30
SFMP—Get Request 0x80
SFMP—Set Request 0x90
SFMP—Set No Reply 0xA0
SFMP—Get Response 0xC0
SFMP—Set Response 0xD0
SFMP—Error Response 0xE0
SFMP—Reserved 0xF0
STMP—Get Request (for 13 dynamic objects) 0x81—0x8D
STMP—Set Request (for 13 dynamic objects) 0x91—0x9D
STMP—Set No Reply (for 13 dynamic objects) 0xA1—0xAD
STMP—Get Next (for 13 dynamic objects) 0xB1—0xBD
STMP—Get Response (for 13 dynamic objects) 0xC1—0xCD
STMP—Set Response (for 13 dynamic objects) 0xD1—0xDD
STMP—Error Response (for 13 dynamic objects) 0xE1—0xED
Reserved for compatibility with TP-T2 0x31
Reserved for compatibility with TP-T2 0x41
Reserved 0x00—0x29
Reserved 0x32—0x40
Reserved 0x42—0x7F
Reserved 0x8E—0x8F
Reserved 0x9E—0x9F
Reserved 0xAE—0xB0
Reserved 0xBE—0xBF
Reserved 0xCE—0xCF
Reserved 0xDE—0xDF
Reserved 0xEE—0xEF
Reserved 0xF1—0xFF

When decoding, TMP transmits the entire data stream, including the first byte, to the correct component
protocol. When encoding, TMP simply transmits the entire data stream to the lower layer without
changing the encoding from the component protocol.

2.2 Simultaneous Processing
A management station takes into account the variable binding list processing nature of TMP. In TMP, all
objects contained in a single set-request data packet appear to be set to their new values simultaneously.
Therefore, a management station shall not combine a state change request with a request to set an
instance value associated with that state change. If such an operation is attempted, the operation may not
be correctly processed. For example, using a single set command to change both the status and contents
of a dynamic object can have unpredictable results.

2.3 Protocol Identification Logic
The structure of the mappings defined in Table 1 is based on the following general principles as depicted
in Figure 2.

NTCIP 1103 v03.52
Page 11

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

Figure 2 Process to Determine Component Protocol

Note: This TMP Protocol first byte value should not be confused with the AID of T2. Specifically,
the values of 0x31 and 0x41 should never be received at the Application Layer of TMP; these
values may be used by the T2 Transport Profile to identify an SNMP Trap or a header using port
numbers, but this information is stripped by T2 prior to delivering the Application Layer Data to
this process.

Support
STMP?

Support
SFMP?

SNMP Yes

Byte >=
0x80?

Discard

Low
Nibble
= 0?

0x0 <
Low

Nibble
<0xE?

STMP

SFMP

Byte =
0x30?

High
Nibble <

0xF?

Yes

Yes

Yes

Yes

No

No

No

No

No

Received
Application
Layer Data

Get First
Byte

Support
SNMP?

Yes

Yes

Yes

No

No

No

NTCIP 1103 v03.52
Page 12

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

Section 3
Simple Network Management Protocol (SNMP)

SNMP is a major standard developed by the Internet Engineering Task Force (IETF). NTCIP selected
SNMP for use in the ITS industry because of its wide use within the Internet community, the flexibility
SNMP provides management stations to define their own message content, and the simplicity of SNMP.
While there were concerns about the encoding overhead that SNMP imposed on data communications, it
was decided that SNMP provided a core set of functionality and that companion protocols could be
developed to circumvent the overhead issues. While SNMP is only one of the three protocols employed
by TMP, all three protocols follow the same basic get-set paradigm employed by SNMP. This paradigm is
described briefly below and numerous textbooks describe SNMP in much greater detail.

3.1 Overview
SNMP uses a get-set paradigm to exchange individual pieces of data. Each piece of data stored within a
device and that is accessible via the SNMP protocol is called an object. Each object consists of two parts:
the object type and the instance. Some object types may only occur once within a device, these are
called scalar objects and are assigned the instance of zero (0). Other objects, i.e., those that exist in a
table, may have multiple instances; these objects are called columnar objects and their instance is
determined based on which index (i.e., row of the table) they are associated with. The first row of a table
typically has an index of 1.

Each object type stored within a device is formally defined in a computer readable file called a
Management Information Base (MIB). The MIB associates each object type with a precise syntax, a
definition, and an Object Identifier, which is generally about 15 bytes long. An object instance is identified
by appending the instance number to this base Object Identifier. Thus, each piece of data within the
device has a unique number associated with it.

An SNMP management station exchanges data by sending each subject object identifier along with the
get or set request. A single SNMP message may, and typically does, include the request for multiple
objects simultaneously. Thus, any one SNMP data packet is likely to contain several of these large object
identifiers. Likewise, the response also returns the object identifiers along with the data, even for
responses to set operations.

SNMP also allows an agent to transmit unsolicited information called a trap. Data transmitted along with
the trap notification also includes Object Identifiers.

This is a reasonable approach to exchanging data when the data exchanges are infrequent and may
change content from one request to another, which is typical of the Internet. However, within the ITS
environment, the majority of the communications volume between a management application and an
agent consists of a small number of messages that are repeatedly exchanged. In many cases, these
exchanges occur frequently over dedicated channels. Thus, a significant reduction in the size of these
frequently repeated messages could significantly reduce the size of the communications channel required
for a link.

3.2 Definition
SNMP shall be in accordance with SNMP version 1 as defined in IAB Std. 15 / RFC 1157, and the
requirements in Section 3.2, Section 6, and Section 8.

NTCIP 1103 v03.52
Page 13

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

3.2.1 General Rules
A management station shall take into account the variable binding list processing nature of TMP. In TMP,
all objects contained in a single set-request data packet appear to be set to their new values
simultaneously. Therefore, a management station shall not combine a state change request with a
request to set an instance value associated with that state change. If such an operation is attempted, the
operation may not be correctly processed.

3.2.2 Set Operations on a Read-Only Variable
Upon an agent receiving a SetRequest-PDU for a read-only object, the first condition listed under Clause
4.1.5 of IAB Std. 15 / RFC 1157 shall apply.

Note: The definition of ErrorStatus in Clause 4.1.1 of IAB Std. 15 / RFC 1157 and the wording of
Clause 4.1.5 of IAB Std. 15 / RFC 1157 have caused some confusion as to how a device should
handle a SetRequest-PDU for a read-only object. For the purposes of conformance with NTCIP
1103 v03, the most literal meaning of the IAB Std. 15 / RFC 1157 text applies. Thus, upon receipt
of a SetRequest-PDU for a read-only object, an agent responds with a noSuchName error. This
interpretation is consistent with that of the broader Internet community as indicated in the
clarifications provided by RFC 1213, which deprecates the snmpOutReadOnlys object and
indicates that transmitting readOnly error is in fact a protocol error (within the definition of
snmpInReadOnlys). The other TMP protocols have been designed to return the read-only error
value.

A management station shall accept all of the following error codes as valid responses to an attempt to set
a read-only object: noSuchName, readOnly, and genErr.

Note: This requirement ensures that a management station is able to work properly with a pre-
existing NTCIP-conformant device that may have interpreted IAB Std. 15 / RFC 1157 differently.

3.2.3 Extra Data Prohibition
An agent receiving a get-request or get-next-request containing anything other than a NULL in a variable
binding value field shall silently drop the data packet.

Note: Clause 4.1.1 of IAB Std. 15 / RFC 1157 requires that any value in this field be ignored.
NTCIP 1103 v03 further clarifies the intent of the IAB Std. 15 / RFC 1157 clause by completely
prohibiting the insertion of any data, thereby minimizing the size of the data packet.

3.2.4 Response Time
The SNMP agent shall process all requests in accordance with Section 3, including processing the
request sufficiently to generate the transmission of the appropriate response (assuming that the SNMP
agent has permission to transmit) within the maximum response time. If the specification does not
indicate the maximum response time, the maximum response time shall be 100 milliseconds plus one
millisecond for each byte in the response variable-bindings field.

3.2.5 Trap Restrictions
Agents claiming conformance with NTCIP 1103 v03 shall issue traps as defined in Section 6 and Annex
A.9. Support for generating the trapEvent (See Annex A.9.4) is optional for an agent. If the trapEvent is
supported, it shall be implemented in conformance with Section 6. An agent shall not issue any other trap
(i.e., generic SNMP traps) other than the trapEvent.

NTCIP 1103 v03.52
Page 14

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

Note: The restrictions placed on traps defined in NTCIP 1103 v03 are designed to prevent one or
more agents from flooding the network with traps when conditions go awry, and to maximize the
management stations capabilities in configuring which traps to monitor at any time.

Support for processing SNMP traps is optional for the management station.

Note: If a management station wishes to manage the generic traps from its NTCIP devices, traps
are handled within the transportation management application rather than a network management
application.

NTCIP 1103 v03.52
Page 15

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

Section 4
Simple Fixed Message Protocol (SFMP)

4.1 Overview
SFMP can be viewed as a simplified, more compact version of SNMP. A careful analysis of SNMP
reveals that the size and complexity of the data packets can be reduced by:

a) Identifying the data contents within a data packet by using a single identifier that references a group

of data elements rather than using a separate identifier in association with each data element in the
data packet;

b) Defining a data packet structure that only includes the information that is required for a given
message type (e.g., a set response does not need to echo the values); and

c) Using a set of encoding rules that are more efficient than the Basic Encoding Rules (BER) as used by
SNMP.

4.1.1 Data Identification
SFMP decreases the size of the overhead consumed by data identification in two ways. First, SFMP is
designed with the assumption that it exchanges a single composite object, i.e., an object that consists of
a defined sequence of other objects. This approach decreases the overhead by allowing the use of a
single object identifier rather than a separate identifier for each component object. Second, the design of
SFMP incorporates the concept that all of the composite objects are located under the NEMA node of the
ISO tree. As such, it includes an encoding mechanism to shorten the object identifiers for objects under
this node. Further, the complexity of the SFMP protocol is reduced because of the fact that an agent is
not required to handle a get or set command with any combination of data in any order; it only is required
to support one object at a time and if the object is a block object, the ordering of data is always fixed. This
allows less powerful and less complex devices to support NTCIP.

4.1.2 Packet Structure
In SNMP, all of the data packets use a very similar data structure. While this provides for some
advantages in code reusability, it also results in extra information being sent in many of the SNMP data
packets. Because of the need to minimize the overhead for the most frequently exchanged messages
and to minimize the processing requirements to decode these extra bytes, NTCIP developed the SFMP
Data Packet Structure to more efficiently exchange the fixed messages while still providing necessary
security functions. This packet structure is defined in detail in Section 4.2.

4.1.3 Encoding
SNMP encodes all of its information according to the ASN.1 BER. BER uses a three tuple to encode data
for transmission. The first element of the tuple, the type, specifies what type of data follows. The second
element of the tuple, the length, specifies how many octets the data occupies. The third and final element
of the tuple, the value, is the actual data being transmitted. This encoding is sometimes referred to as
TLV encoding, which stands for “type”, “length”, “value”. This provides a very flexible method of encoding
information for transmission; however, if both sides have already agreed on a specific data structure, it
includes unnecessary overhead by including the “type” field and the “length” field for fixed length data.

As a result, NTCIP has defined a separate set of ASN.1 encoding rules, known as Octet Encoding Rules
(OER), as defined in NTCIP 1102:2004. OER eliminates the type field completely, and it eliminates the
length field under those conditions where length is known. Given that most of the object definitions (data
elements) defined by NTCIP consist of integers in the range of 0 to 255, OER is able to significantly

NTCIP 1103 v03.52
Page 16

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

reduce the size of many NTCIP data packets.

4.2 Definition
Each SFMP-based interface implementation on a device shall be declared to be either a management
station or an agent, but not both. A device can have multiple SFMP-based interface implementations,
each of which is independently declared as either a management station or an agent. It is not required
that all SFMP-based interface implementations on a device be declared to have the same role.

Management stations may transmit SFMP-GetRequest-PDU’s, SFMP-SetRequest-PDU’s, and SFMP-
SetRequest-NoReply-PDU’s as necessary to manage agents. Management stations shall be able to
receive and process SFMP-GetResponse-PDU’s, SFMP-SetResponse-PDU’s, and SFMP-
ErrorResponse-PDU’s per the rules defined within this clause.

Agents shall be able to receive and process SFMP-GetRequest-PDU’s, SFMP-SetRequest-PDU’s, and
SFMP-SetRequest-NoReply-PDU’s per the rules defined within this clause, including the ability to
transmit SFMP-GetResponse-PDU’s, SFMP-SetResponse-PDU’s, and SFMP-ErrorResponse-PDU’s as
required.

The transmission of SFMP data packets shall be governed by the rules and procedures defined in
Sections 4.2.1 and 4.2.2 and shall conform to the structures defined in Section 4.2.3.

4.2.1 Rules
Similar to SNMP, SFMP models all device functions as alterations (i.e., SETs) or inspections (i.e., GETs)
of variables (i.e., objects). This strategy avoids the complexities of defining a different message type as a
part of the protocol definition for each command desired.

Communication among protocol entities is accomplished by the exchange of protocol messages, each of
which may be entirely and independently represented within a single datagram. An implementation of this
protocol shall accept valid messages whose length does not exceed 484 octets. However, it is
recommended that implementations support larger messages whenever feasible.

A management station shall take into account the variable binding list processing nature of TMP. In TMP,
all objects contained in a single set-request data packet appear to be set to their new values
simultaneously. Therefore, a management station shall not combine a state change request with a
request to set an instance value associated with that state change. If such an operation is attempted, the
operation may not be correctly processed.

4.2.2 Elements of Procedure
Section 4.2.2 describes the actions of a protocol entity implementing SFMP; however, Section 4.2.2 is not
intended to constrain the internal architecture of any conformant implementation.

An SFMP protocol entity transmits an SFMP message by passing the serialized message to a transport
service capable of sending the message to the peer protocol entity.

An SFMP protocol entity receives an SFMP message as follows:

a) It performs a rudimentary parse of the incoming datagram to build an ASN.1 object corresponding
to the referenced objects. If the parse fails, it discards the datagram and performs no further
actions.

b) It then verifies the version number of the SFMP message. If there is a mismatch, it discards the
datagram and performs no further actions.

c) It then authenticates the community name. If the authentication fails, the protocol records an
authentication failure event by incrementing the sfmp-inBadCommunityNames object (See Annex

NTCIP 1103 v03.52
Page 17

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

A.4) and the agentHealth-authenticationFailures object, discards the datagram, and performs no
further actions.

d) It then processes the message according to the rules defined in Sections 4.2.2.2 and 4.2.2.3
using the identified community.

4.2.2.1 Initiating a Request
An SFMP management station may, at any time, initiate a get or set request by generating an SFMP-
Data-Packet containing an SFMP-GetRequest-PDU, an SFMP-SetRequest-PDU, or an SFMP-
SetRequest-NoReply-PDU. The conditions that may result in the management station initiating such a
request are the subject of the end-application functionality and are beyond the scope of NTCIP 1103 v03.

An SFMP agent shall not issue an SFMP-Data-Packet containing an SFMP-GetRequest-PDU, an SFMP-
SetRequest-PDU, or an SFMP-SetRequest-NoReply-PDU. This restriction shall not preclude a single
device from acting as both a management station and an agent.

4.2.2.2 Processing a Request
An SFMP management station shall silently drop (discard and perform no further action on the request)
any SFMP-GetRequest-PDU, SFMP-SetRequest-PDU, or SFMP-SetRequest-NoReply-PDU.

The SFMP agent shall process all requests in accordance with the following subclauses, including
processing the request sufficiently to generate the transmission of the appropriate response (assuming
that the SFMP agent has permission to transmit) within the maximum response time. If the specification
does not indicate the maximum response time, the maximum response time shall be 100 milliseconds
plus one millisecond for each byte in the response SFMP-PDU data field.

4.2.2.2.1 Processing an SFMP Get Request
Upon receipt of an SFMP-GetRequest-PDU, an SFMP agent shall respond according to the following
rules, in order:

a) If the SFMP-GetRequest-PDU contains an information field, the agent shall silently drop the data
packet.

b) If the value of the message-OID field does not exactly correspond to an object available for get
operations in the relevant MIB view, the agent shall transmit to the originator of the request an
SFMP-Data-Packet containing an SFMP-ErrorResponse-PDU. The error-status field shall
indicate noSuchName and the error-index field shall indicate zero (0).

c) If the value of the message-OID field references an object that is of a non-accessible aggregate
type (as defined by RFC 1155, a normative reference of NTCIP 8004 v02), the agent shall
transmit to the originator of the request an SFMP-Data-Packet containing an SFMP-
ErrorResponse-PDU. The error-status field shall indicate noSuchName and the error-index field
shall indicate zero (0).

d) If the size of the SFMP-GetResponse-PDU would exceed a local limitation, the agent shall
transmit to the originator of the request an SFMP-Data-Packet containing an SFMP-
ErrorResponse-PDU. The error-status fields shall indicate tooBig and the error-index field shall
indicate zero (0).

e) If the value of the object referenced by the message-OID field cannot be retrieved for reasons not
covered by any of the foregoing rules, the agent shall transmit to the originator of the request an
SFMP-Data-Packet containing an SFMP-ErrorResponse-PDU. The error-status field shall
indicate genErr and the error-index field shall either indicate zero (0) or shall indicate the element
within the structure that is preventing the operation.

f) If none of the foregoing rules apply, the agent shall transmit to the originator of the request an
SFMP-Data-Packet containing an SFMP-GetResponse-PDU such that the request number field
shall be that used in the SFMP-GetRequest-PDU and the data field shall contain the requested
information.

NTCIP 1103 v03.52
Page 18

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

4.2.2.2.2 Processing an SFMP Set Request
Upon receipt of an SFMP-SetRequest-PDU, an SFMP agent shall respond according to the following
rules, in order:

a) If the SFMP-SetRequest-PDU does not contain a data field, the agent shall silently drop the data
packet.

b) If the object referenced by the value of the message-OID field is only available for get operations
within the relevant MIB view, the agent shall transmit to the originator of the request an SFMP-
Data-Packet containing an SFMP-ErrorResponse-PDU. The error-status field shall indicate
readOnly and the error-index field shall indicate zero (0).

c) If the value of the message-OID field does not exactly correspond to an object available for set
operations in the relevant MIB view, the agent shall transmit to the originator of the request an
SFMP-Data-Packet containing an SFMP-ErrorResponse-PDU. The error-status field shall
indicate noSuchName and the error-index field shall indicate zero (0).

d) If the contents of the data field cannot be parsed to fit the SYNTAX defined for the referenced
object, the agent shall transmit to the originator of the request an SFMP-Data-Packet containing
an SFMP-ErrorResponse-PDU. The error-status field shall indicate badValue and the error-index
field shall indicate the field number at which the parsing first failed.

e) If the value of the object referenced by the message-OID field cannot be altered for reasons not
covered by any of the foregoing rules, the agent shall transmit to the originator of the request an
SFMP-Data-Packet containing an SFMP-ErrorResponse-PDU. The error-status field shall
indicate genErr and the error-index field shall either indicate zero (0) or shall indicate the element
within the structure that is preventing the operation.

f) If none of the foregoing rules apply, the agent shall assign the requested value to the subject
object. If the object is a block object, each sub-variable assignment specified by the request shall
be effected as if simultaneously set with respect to all other assignments specified in the same
message. The agent shall then transmit to the originator of the request an SFMP-Data-Packet
containing an SFMP-SetResponse-PDU such that the request number field shall be that used in
the SFMP-SetRequest-PDU.

4.2.2.2.3 Processing an SFMP Set Request-No Reply
Upon receipt of an SFMP-SetRequest-NoReply-PDU, an SFMP agent shall respond according to the
following rules, in order:

a) If the SFMP-SetRequest-NoReply-PDU does not contain a data field, the agent shall silently
discard the data packet.

b) If the object referenced by the value of the message-OID field is only available for get operations
within the relevant MIB view, the agent shall silently discard the datagram and perform no further
actions.

c) If the value of the message-OID field does not exactly correspond to an object available for get or
set operations in the relevant MIB view, the agent shall silently discard the datagram and perform
no further actions.

d) If the contents of the data field cannot be parsed to fit the SYNTAX defined for the referenced
object, the agent shall silently discard the datagram and perform no further actions.

e) If the value of the object referenced by the message-OID field cannot be altered for reasons not
covered by any of the foregoing rules, the agent shall silently discard the datagram and perform
no further actions.

f) If none of the foregoing rules apply, the agent shall assign the requested value to the subject
object. If the object is a block object, each sub-variable assignment specified by the request shall
be effected as if simultaneously set with respect to all other assignments specified in the same
message.

4.2.2.3 Confirmation of Request

NTCIP 1103 v03.52
Page 19

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

An SFMP agent shall silently drop any SFMP-Data-Packet containing an SFMP-GetResponse-PDU,
SFMP-SetResponse-PDU, or SFMP-ErrorResponse-PDU.

An SFMP management station should expect to receive a response message for each request
transmitted, except a SetRequest-NoReply. As such, it should maintain a list of outstanding requests.
Each new request should be assigned a request number that is not currently used by any outstanding
request. As soon as this request number is assigned, the request should be added to the outstanding
request list.

Upon receipt of an SFMP-SetResponse-PDU, the management station shall parse the data into the
appropriate ASN.1 structure. If any information other than the request-number is present, the PDU shall
be silently dropped. It should then remove the associated request from the outstanding request list. If the
management station is unable to find the associated request, it should log the error and notify the end-
application.

Upon receipt of a SFMP-GetResponse-PDU, the management station should remove the associated
request from the outstanding request list and should parse the data field into the appropriate ASN.1
structure. If the management station cannot find the associated request or if the contents of the data field
cannot be parsed properly, the error should be logged and the end-application notified; otherwise, the
management station should provide the end-application with the parsed data.

Upon receipt of an SFMP-ErrorResponse-PDU, the management station should remove the associated
request from the outstanding request list, log the error, and notify the end-application. If the management
station is unable to find the associated request, it should log the error and notify the end-application.

The management station should periodically check the outstanding request list for abnormally old
requests. Upon the discovery of any abnormally old request, the management station should remove the
request from the outstanding request list, notify the end-application, and log the action.

Note: The maximum time for a response to be expected from an agent is specified depending on
system design, communications infrastructure, and type of field device.

4.2.3 SFMP Data Packet Structures
All SFMP data packets shall conform to the general structure defined by SFMP-Data-Packet and shall be
encoded according to NTCIP 1102:2004.

SFMP-Data-Packet ::= CHOICE {
sfmp -get [0] SFMP-GetRequest-PDU,
sfmp -set [16] SFMP-SetRequest-PDU,
sfmp -set-no-reply [32] SFMP-SetRequest-NoReply-PDU,
sfmp -get-response [PRIVATE 0] SFMP-GetResponse-PDU,
sfmp -set-response [PRIVATE 16] SFMP-SetResponse-PDU,
sfmp -error [PRIVATE 32] SFMP-ErrorResponse-PDU
...
}

Each of the above referenced PDU structures are based on the same core data structure, but they are
distinguished by the formal rules that are defined for using this base structure. While this approach does
not provide unique ASN.1 for each structure, it does facilitate the development of implementations by
having one structure used for all operations. This core structure is the SFMP-PDU structure, defined as
follows:

SFMP-PDU ::= SEQUENCE {
version ENUMERATED{version-1(1), ...} DEFAULT version-

1,

NTCIP 1103 v03.52
Page 20

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

community-name OCTET STRING DEFAULT “public”,
request-number INTEGER (0..255) OPTIONAL,
error- data Error -Data OPTIONAL,
message-OID RELATIVE-OID OPTIONAL,

-- from {iso org dod internet private enterprises nema}
data OBJECT -TYPE.&Syntax OPTIONAL
...
}

Sections 4.2.3.1 through 4.2.3.5 define the various rules and substructures of this data packet. Section
4.2.4 fully defines the meaning of each field.

4.2.3.1 Structure of SFMP-GetRequest-PDU
The SFMP get operation uses the SFMP-GetRequest-PDU.

SFMP-GetRequest-PDU ::= SFMP-PDU

The following rules shall apply to the SFMP-GetRequest-PDU:

a) The request-number field shall be present
b) The error-data field shall be absent
c) The message-OID field shall be present
d) The data field shall be absent

4.2.3.2 Structure of SFMP-SetRequest-PDU and SFMP-SetRequest-NoReply-PDU
The SFMP set and set-no-reply operations use an identical set of rules applied to the SFMP-PDU
structure as indicated. The distinction between these two packets is made by the value of the encoded
choice in the SFMP-Data-Packet, defined in Section 4.2.3, which always wraps the PDU structure.

SFMP-SetRequest-NoReply-PDU ::= SFMP-PDU
SFMP-SetRequest-PDU ::= SFMP-PDU

The following rules shall apply to the SFMP-SetRequest-PDU and SFMP-SetRequest-NoReply-PDU:

a) The request-number field shall be present
b) The error-data field shall be absent
c) The message-OID field shall be present
d) The data field shall be present

4.2.3.3 Structure of SFMP-Get-Response
An SFMP get response uses the SFMP-GetResponse-PDU structure.

SFMP-GetResponse-PDU ::= SFMP-PDU

The following rules shall apply to the SFMP-GetResponse-PDU:

a) The community-name field shall be absent, if the default value is used. The community name
shall be present, if the community name is NOT “public”, which is the default value

b) The request-number field shall be present
c) The error-data field shall be absent
d) The message-OID field shall be absent
e) The data field shall be present

NTCIP 1103 v03.52
Page 21

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

4.2.3.4 Structure of the SFMP-Set-Response
An SFMP set response uses the SFMP-SetResponse-PDU structure.

SFMP-SetResponse-PDU ::= SFMP-PDU

The following rules shall apply to the SFMP-SetResponse-PDU:

a) The community-name field shall be absent, if the default value is used. The community name
shall be present, if the community name is NOT “public”, which is the default value

b) The request-number field shall be present
c) The error-data field shall be absent
d) The message-OID field shall be absent
e) The data field shall be absent

4.2.3.5 Structure of the SFMP-Error Message
An SFMP error response uses the SFMP-ErrorResponse-PDU structure.

SFMP-ErrorResponse-PDU ::= SFMP-PDU

Error-Data ::= SEQUENCE {
 error-status Error-Status,
 error- index Error-Index
 }

The following rules shall apply to the SFMP-ErrorResponse-PDU:

a) The community-name field shall be absent, if the default value is used. The community name
shall be present, if the community name is NOT “public”, which is the default value

b) The request-number field shall be present
c) The error-data field shall be present
d) The message-OID field shall be absent
e) The data field shall be absent

4.2.4 Definitions of Data Structure Fields
4.2.4.1 Definition of the Version Field
Definition: The version field shall define the version number of the SFMP data packet structure

to which the data packet conforms. When responding, an agent shall use the same
version number as used in the request. Currently, “version-1” is the only value
defined for this field.

Representation: This field shall be encoded per the following ASN.1 Construct:

Version ::= ENUMERATED {version-1 (1), …}

4.2.4.2 Definition of the Community Name Field
Definition: The SFMP community name is identical to the SNMP community name. It provides a

simple non-encrypted password mechanism to prevent non-authorized users from
accessing the agent database. The valid values of the SFMP community name and
their allowed access are identical to those allowed within SNMP; within the context of
NTCIP, these values are defined in the security table in Section 9 and Annex A.

NTCIP 1103 v03.52
Page 22

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

 Note: If multiple TMCs have access to the same device, they should use different
community names to prevent problems arising during certain operations such as
those dealing with the transaction mode.

Representation: This field shall be encoded per the following ASN.1 Construct:

Community-Name ::= OCTET STRING

4.2.4.3 Definition of the Request Number Field
Definition: The request number provides a mechanism by which the management station can

reconcile incoming responses with outstanding requests. When an unreliable
datagram service is used, the request number also provides a simple means of
identifying messages duplicated by the network.

The request number is intended to be a relatively unique identification number for
each request issued from a management station to a specific device. The
management station may pick any appropriate algorithm for the selection of request
numbers but a new request number should not duplicate outstanding requests that
have not expired. An agent’s response shall use the same request number as
contained in the associated request.

Representation: This field shall be encoded per the following ASN.1 Construct:

Request-Number ::= INTEGER (0..255)

4.2.4.4 Definition of the Message OID Field
Definition: The SFMP message-OID field contains the Object Identifier of the object that is the

subject of the message. This field shall include a valid instance number for the
referenced object type.

Representation: This field shall be encoded per the following ASN.1 Construct:

Message-OID ::= RELATIVE-OID
-- from {iso org dod internet private enterprises nema}

The RELATIVE-OID Data Type is a new ASN.1 Data Type that is able to encode only
a portion of an overall OBJECT IDENTIFIER starting after the node specified by the
associated comment field. The Relative OID is encoded identically to a normal
OBJECT IDENTIFIER except that there are no special encoding rules for the first two
tree nodes (e.g., the “iso org” nodes are normally encoded into a single sub-identifier
with a value of 0X2B, no special rules are used with RELATIVE-OIDs).

4.2.4.5 Definition of the Data Field
Definition: The SFMP data field consists of the data referenced by the message OID.

Representation: This field shall be encoded per the SYNTAX field of the subject object’s object-type

macro. The formal reference in the ASN.1 is a reference to the Information Object
Specification as shown:

objectType CLASS ::= {
& oid OBJECT IDENTIFIER,
&Syntax
}

NTCIP 1103 v03.52
Page 23

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

The ‘&oid’ field corresponds to the object identifier as defined in an object’s macro
(e.g., the ::= { security 1 } or similar field at the end of the OBJECT-TYPE macro).
The &Syntax corresponds to the SYNTAX field of the OBJECT-TYPE macro.

Note: The “objectType.&Syntax” is technically a formal reference to an ASN.1 Information Object
Specification that shall be considered the equivalent of the SNMP object definitions, which use
the obsolete ASN.1 Macro format within its Management Information Bases. This anomaly is due
to a problem in harmonizing different versions of ASN.1 within a single specification. The intent is
that the “data” field shall be per the SYNTAX field of the subject object’s object-type macro. See
NTCIP 8004 v02.

4.2.4.6 Definition of the Error Status Field
Definition: The SFMP error status field identifies the type of error encountered by the agent

while processing the associated request from central.

Representation: This field shall be encoded per the following ASN.1 Construct:

Error-Status ::= INTEGER {
 tooBig (1),
 noSuchName(2),
 badValue (3),
 readOnly (4),
 genErr (5)
 }

Note: These error codes are consistent with those numbers assigned by SNMP (IAB Std. 15 /
RFC 1157). The value of “noError (0)” as defined in SNMP is never valid within the design of
SFMP and has been omitted from this list. If a management station receives any value not
defined in this list, it shall treat it as a genErr.

The values are defined as:

a) tooBig(1): this error is returned if the PDU was larger than expected. The index number shall be
set to zero.

b) noSuchName(2): the nested field (or object identifier in the case of STMP) indicated by the index
number is not supported by the agent.

c) badValue(3): this error can only occur during a set operation. The nested field (or object in the
case of STMP) indicated by the index number value shall be the first that is not valid (out of
range).

d) readOnly(4): this error can only occur during a set operation. The index number indicates which
nested field (or object in the case of STMP) could not be written.

e) genErr(5): this error indicates that some other error has occurred that does not conform to one of
the specified errors above. It is application specific and requires referencing the agent’s
documentation to determine what the error may be.

4.2.4.7 Definition of the Error Index Field
Definition: The SFMP error index field indicates the precise location of the data that resulted in

the reported error status. In some cases, as detailed in Section 4.2.2, this value may
be zero, indicating that the error is due to a reason other than the value of the data
field.

The value indicates the nested field number where the error was detected within the
object. In this count, all optional and default objects are counted, even if they are not

NTCIP 1103 v03.52
Page 24

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

present in the encoding. In a sequence of, only those items present are counted (i.e.,
if the SEQUENCE OF only contains data for rows 3 and 5 of a table, it only considers
these rows in the count). For example, if the error is contained in the third instance of
a SEQUENCE OF SEQUENCE, and in the third field with the SEQUENCE having a
total of five fields, the error index would be 5+5+3 = 13.

Representation: This field shall be encoded per the following ASN.1 Construct:

Error-Index::= INTEGER (0..255)

 The value 255 shall mean the 256th field or greater.

4.3 Examples
The hexadecimal byte values in the left column are those data field bytes for the Application Level
actually sent over the wire per OER. Lower layer protocols encapsulate these bytes as appropriate.

4.3.1 Get an Object Example
This an example of the SFMP data packets for a get and get-response for globalTime.0.

Bytes SFMP Get-Request Data-Packet
80 CHOICE = [0] (i.e., context specific) = sfmp-get
 SFMP-GetRequest-PDU = SEQUENCE
14 Preamble = 0001 0100 =

Bit 1 = 0 – extension absent
Bit 2 = 0 – default version = version-1
Bit 3 = 0 – default community name = “public”
Bit 4 = 1 – request-number present
Bit 5 = 0 – error-data absent
Bit 6 = 1 – message-oid present
Bit 7 = 0 – data absent
Bit 8 = 0 – RESERVED

01 request number = 1
06 04 02 06 03 01 00 message-oid of 6 bytes at nema.4.2.6.3.1.0 = globalTime.0

Note: For more information on the definition of the preamble and how to encode default fields,
see NTCIP 1102:2004.

 SFMP Get-Response Data-Packet
C0 CHOICE = [PRIVATE 0] = sfmp-get-response
 SFMP-GetResponse-PDU = SEQUENCE
12 Preamble = 0001 0010 =

Bit 1 = 0 – extension absent
Bit 2 = 0 – default version = version-1
Bit 3 = 0 – default community name = “public”
Bit 4 = 1 – request-number present
Bit 5 = 0 – error-data absent
Bit 6 = 0 – message-oid absent
Bit 7 = 1 – data present
Bit 8 = 0 – RESERVED

01 request number = 1
3A 24 63 20 data = globalTime.0 = 975463200 = November 29, 2000 at 2:00 am

UTC.

NTCIP 1103 v03.52
Page 25

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

4.3.2 Get Block Object with Community Name Example
This is an example of the SFMP data packets for a get and get-response for the globalTime.0 object,
using a community name other than the default of “public.” The community name used in this example
demonstrates that the community name may use any hexadecimal sequence and it is not restricted to
printable ASCII.

 SFMP Get-Request Data-Packet
80 CHOICE = [0] (i.e., context specific) = sfmp-get
 SFMP-GetRequest-PDU = SEQUENCE
34 Preamble = 0011 0100 =

Bit 1 = 0 – extension absent,
Bit 2 = 0 – default version = version-1
Bit 3 = 1 – community name present
Bit 4 = 1 – request-number present
Bit 5 = 0 – error-data absent
Bit 6 = 1 – message-oid present
Bit 7 = 0 – data absent
Bit 8 = 0 – RESERVED

09 7E 6F 63 74 65 community name (first byte (09 hex) specifies length - 9 bytes) =
74 73 7E 99 “~octets~”
02 request number = 2
06 04 02 06 03 01 00 message-oid of 6 bytes at nema.4.2.6.3.1.0 = globalTime.0

 SFMP Get-Response Data-Packet
C0 CHOICE = [PRIVATE 0] = sfmp-get-response
 SFMP-GetResponse-PDU = SEQUENCE
12 Preamble = 0001 0010 =

Bit 1 = 0 – extension absent
Bit 2 = 0 – default version = version-1
Bit 3 = 0 – default community name = “public”
Bit 4 = 1 – request-number present
Bit 5 = 0 – error-data absent
Bit 6 = 0 – message-oid absent
Bit 7 = 1 – data present
Bit 8 = 0 – RESERVED

02 request number = 2
3A 24 63 20 data = globalTime.0 = 975463200 = November 29, 2000 at 2:00 am

UTC.

4.3.3 SFMP Set Example
The following provides an example of the SFMP data packets for a set and set-response for
globalTime.0.

 SFMP Set Request Data-Packet
90 CHOICE = [16] = sfmp-set
 SFMP-SetRequest-PDU = SEQUENCE
16 Preamble = 0001 0110=

Bit 1 = 0 – extension absent
Bit 2 = 0 – default version = version-1
Bit 3 = 0 – default community name = “public”
Bit 4 = 1 – request-number present
Bit 5 = 0 – error-data absent
Bit 6 = 1 – message-oid present
Bit 7 = 1 – data present

NTCIP 1103 v03.52
Page 26

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

Bit 8 = 0 – RESERVED
03 request number = 3
06 04 02 06 03 01 00 message-oid of 6 bytes at nema.4.2.6.3.1.0
3A 24 63 20 data = globalTime.0 = 975463200 = November 29, 2000 at 2:00 am UTC

 SFMP Set Response Data-Packet
D0 CHOICE = [PRIVATE 16] = sfmp-set-response
 SFMP-Set-Response = SEQUENCE
10 Preamble = 0001 0000 =

Bit 1 = 0 – extension absent
Bit 2 = 0 – default version = version-1
Bit 3 = 0 – default community name = “public”
Bit 4 = 1 – request-number present
Bit 5 = 0 – error-data absent
Bit 6 = 0 – message-oid absent
Bit 7 = 0 – data absent
Bit 8 = 0 – RESERVED

03 request number = 3

4.3.4 SFMP Set Block Object Example
This example assumes a sample read-write block object defined under nema at node 1.1.1 with the
following resolution of the OerString:

SampleBlockObject ::= SEQUENCE OF SEQUENCE {

a INTEGER , -- set to 1, 4, 7
 b INTEGER DEFAULT 5, -- set to 2, 5, 8

 c INTEGER (0..10), -- set to 3, 6, 9
 d OCTET STRING, -- all three set to “hi”
 e OCTET STRING (SIZE 1) -- all three set to 0xFF
 }

 SFMP Set Request Data-Packet
90 CHOICE = [16] = sfmp-set
 SFMP-Set = SEQUENCE
36 Preamble = 0011 0110 =

Bit 1 = 0 – extension absent
Bit 2 = 0 – default version = version-1
Bit 3 = 1 –community name present
Bit 4 = 1 – request-number present
Bit 5 = 0 – error-data absent
Bit 6 = 1 – message-oid present
Bit 7 = 1 – data present
Bit 8 = 0 – RESERVED

0D 61 64 6D 69 6E 69
73 74 72 61 74 6F 72 community name of 13 bytes = “administrator”
04 request number = 4
04 01 01 01 00 message-oid of 4 bytes at nema.1.1.1.0

 data field = OerString
 SEQUENCE OF
01 03 quantity of items = a one-byte value of 3
 First SEQUENCE
80 preamble = 1000 0000 = b is present
01 01 a = a one-byte value of 1
01 02 b = a one-byte value of 2

NTCIP 1103 v03.52
Page 27

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

03 c = 3 (forced to one-byte by range)
02 68 69 d = a two-byte string of “hi”
FF e = 0xFF
 Second SEQUENCE
00 preamble = 0000 0000 = b is not present
01 04 a = a one-byte value of 4
 b defaults to 5
06 c = 6
02 68 69 d = a two-byte string of “hi”
FF e = 0xFF
 Third SEQUENCE
80 preamble = 1000 0000 = b is present
01 07 a = a one-byte value of 7
01 08 b = a one-byte value of 8
09 c = a one-byte value of 9
02 68 69 d = a two-byte string of “hi”
FF e = 0xFF

 SFMP Set Response Data-Packet
D0 CHOICE = [PRIVATE 16] = sfmp-set-response
 SFMP-Set-Response = SEQUENCE
10 Preamble = 0001 0000 =

Bit 1 = 0 – extension absent
Bit 2 = 0 – default version = version-1
Bit 3 = 0 – default community name = “public”
Bit 4 = 1 – request-number present
Bit 5 = 0 – error-data absent
Bit 6 = 0 – message-oid absent
Bit 7 = 0 – data absent
Bit 8 = 0 – RESERVED

04 request number = 4

4.3.5 Get Error Example
This is an example of an error when getting an object with an invalid OID.

 SFMP Get Request Data-Packet
80 CHOICE = [0] (i.e., context specific) = sfmp-get
 SFMP-GetRequest-PDU = SEQUENCE
14 Preamble = 0001 0100 =

Bit 1 = 0 – extension absent
Bit 2 = 0 – default version = version-1
Bit 3 = 0 – default community name = “public”
Bit 4 = 1 – request-number present
Bit 5 = 0 – error-data absent
Bit 6 = 1 – message-oid present
Bit 7 = 0 – data absent
Bit 8 = 0 – RESERVED

05 request number = 5
01 00 message-oid of 6 bytes at nema.0 = nema.0 (not an object)

 SFMP Error-Response Data-Packet
E0 CHOICE = [PRIVATE 32] = sfmp-error
 SFMP-ErrorResponse-PDU = SEQUENCE
18 Preamble = 0001 1000 =

Bit 1 = 0 – extension absent

NTCIP 1103 v03.52
Page 28

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

Bit 2 = 0 – default version = version-1
Bit 3 = 0 – default community name = “public”
Bit 4 = 1 – request-number present
Bit 5 = 1 – error-data absent
Bit 6 = 0 – message-oid absent
Bit 7 = 0 – data present
Bit 8 = 0 – RESERVED

05 request number = 5
 Error-Data = SEQUENCE

02 errorStatus = 2 = noSuchName
00 errorIndex = 0, problem with the object as a whole

4.3.6 Set Error Example
This is an example of an error when setting an object to a bad value using the structure defined in Section
4.3.4.

 SFMP Set Request Data-Packet
90 CHOICE = [16] = sfmp-set
 SFMP-Set = SEQUENCE
36 Preamble = 0011 0110 =

Bit 1 = 0 – extension absent
Bit 2 = 0 – default version = version-1
Bit 3 = 1 –community name present
Bit 4 = 1 – request-number present
Bit 5 = 0 – error-data absent
Bit 6 = 1 – message-oid present
Bit 7 = 1 – data present
Bit 8 = 0 – RESERVED

0D 61 64 6D 69 6E 69
73 74 72 61 74 6F 72 community name of 13 bytes = “administrator”
06 request number = 6
04 01 01 01 00 message-oid of 4 bytes at nema.1.1.1.0
 data field = OerString
 SEQUENCE OF
01 03 quantity of items = a one-byte value of 3
 First SEQUENCE
80 preamble = 1000 0000 = b is present
01 01 a = a one-byte value of 1
01 02 b = a one-byte value of 2
03 c = 3 (forced to one-byte by range)
02 68 69 d = a two-byte string of “hi”
FF e = 0xFF
 Second SEQUENCE
00 preamble = 0000 0000 = b is not present
01 04 a = a one-byte value of 4
 b defaults to 5
06 c = 6
02 68 69 d = a two-byte string of “hi”
FF e = 0xFF
 Third SEQUENCE
80 preamble = 1000 0000 = b is present
01 07 a = a one-byte value of 7
01 08 b = a one-byte value of 8
10 c = a one-byte value of 16 (an invalid value)
02 68 69 d = a two-byte string of “hi”

NTCIP 1103 v03.52
Page 29

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

FF e = 0xFF

 SFMP Error-Response Data-Packet
E0 CHOICE = [PRIVATE 32] = sfmp-error
 SFMP-ErrorResponse-PDU = SEQUENCE
18 Preamble = 0001 1000 =

Bit 1 = 0 – extension absent
Bit 2 = 0 – default version = version-1
Bit 3 = 0 – default community name = “public”
Bit 4 = 1 – request-number present
Bit 5 = 1 – error-data present
Bit 6 = 0 – message-oid absent
Bit 7 = 0 – data absent
Bit 8 = 0 – RESERVED

06 request number = 6
 Error-Data = SEQUENCE

03 errorStatus = 3 = badValue
0D errorIndex = 13, problem with the 13th field of the object

NTCIP 1103 v03.52
Page 30

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

Section 5
Simple Transportation Management Protocol (STMP)

Note: This definition of STMP is backward compatible with the definition provided in NEMA TS
3.2-1996. STMP requires SNMP or SFMP to allow a management station to configure the
dynamic objects.

5.1 Overview
STMP is conceptually similar to SFMP, except that it has been designed to work with dynamic objects,
i.e., block objects defined at run time, rather than just a set of predefined block objects. This has the
benefit of providing the management station with the flexibility required to define its own messages (i.e.,
block object structures that avoid the need to include object identifiers and thereby significantly reduce
the number of bytes), but as a result it significantly increases the complexity of the software within the
agent. It also uses a number of the same truncations used by SFMP to decrease data packet size as
compared to SNMP. This approach provides a potentially significant advantage in applications involving
frequent polling on limited bandwidth links.

5.1.1 Dynamic Objects
NTCIP realized that it would be very difficult to reach consensus on a small set of fixed messages for
some of the more complex devices such as traffic signal controllers. Yet it was clear that these devices
would still be called upon to frequently exchange status information over low speed communication
circuits. As a result of this analysis, NTCIP developed the concept of a dynamic object, which is the major
feature of STMP. A dynamic object is a simple sequence of specific NTCIP objects, similar to a block
object, but the component objects within a dynamic object are defined at run-time by the management
station rather than being defined in a static MIB.

The management station shall only configure the dynamic objects using SNMP or SFMP messages to set
the values in the dynamic object configuration table, defined in Section 5.1.1.1, and the dynamic object
definition table, defined in Section 5.1.1.2.

5.1.1.1 Dynamic Object Configuration Table
The dynObjConfigTable is a table indicating the owner and status of each dynamic object. Because of
historic reasons explained in 5.1.1.2, its index, the dynObjNumber, is located under a different node on
the ISO Naming Tree, but this has no operational impact. The dynObjConfigTable has conceptual rows
that contain the objects shown in Table 2.

Table 2 Columns of the Dynamic Object Configuration Table

dynObjNumber dynObjConfigOwner dynObjConfigStatus

The INDEX for a particular row in the dynObjConfigTable is defined by dynObjNumber. It identifies with
which of the 13 dynamic objects this row of the table is associated.

The intent of the dynObjConfigOwner object is to indicate the identity of the owner that defined the
dynamic object.

NTCIP 1103 v03.52
Page 31

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

The dynObjConfigStatus indicates the status of the dynamic object. The allowed states of each dynamic
object are defined by the ConfigEntryStatus type, as defined in Section 5.2.4.1. The status may be valid,
invalid, or underCreation.

5.1.1.2 Dynamic Object Definition Table
In addition to defining the state (and optionally the owner) of each dynamic object, the management
station also defines the desired contents of the dynamic object. One approach to solving this problem
would have been to define a series of additional fields in the dynObjConfigTable, such as dynObjField1,
dynObjField2, dynObjField3, etc., where each was an OBJECT IDENTIFIER pointing to the desired
object. However, this would have resulted in a large number of very similar object types. Instead, NTCIP
defined an embedded table to contain the list of objects. The embedded table, called the dynObjDef table,
uses the same dynObjNumber as the primary index; it then uses a secondary index, dynObjIndex, to
indicate the position of the referenced variable in the dynamic object. Finally, the dynObjVariable
references the specific object to be included in the indicated field in the indicated dynamic object.
Because the table is embedded, the editing rules imposed by the dynObjConfigStatus parameter affect
the access to the cells of this table as well. See Table 3.

Table 3 Composite Table for Dynamic Object Configuration and Definition

dynObjNumber dynObjConfigOwner dynObjConfigStatus dynObjIndex dynObjVariable
1 <Owner of Dynamic

Object #1>
<Status of Dynamic

Object #1>
1 <OID of 1st object in dynObj

1>
2 <OID of 2nd object in dynObj

1>
3 <OID of 3rd object in dynObj

1>
… …

255 <OID of 255th obj. in dynObj
1>

2 <Owner of Dynamic
Object #2>

<Status of Dynamic
Object #2>

1 <OID of 1st object in dynObj
2>

2 <OID of 2nd object in dynObj
2>

3 <OID of 3rd object in dynObj
2>

… …
255 <OID of 255th obj. in dynObj

2>
3 <Owner of Dynamic

Object #3>
<Status of Dynamic

Object #3>
1 <OID of 1st object in dynObj

3>
2 <OID of 2nd object in dynObj

3>
3 <OID of 3rd object in dynObj

3>
… …

255 <OID of 255th obj. in dynObj
3>

… … … … …
13 <Owner of Dynamic

Object #13>
<Status of Dynamic

Object #13>
1 <OID of 1st obj in dynObj 13>
2 <OID of 2nd obj in dynObj 13>
3 <OID of 3rd obj in dynObj 13>
… …

255 <OID of 255th obj - dynObj 13>

Note: Version 1 of the Transportation Management Information Base (TMIB) defined in NEMA TS
3.2 / NTCIP 1101:1996 had an owner parameter and a status parameter for each dynamic object
variable. Deployment experience indicated that this design was less than ideal and thus NEMA TS

NTCIP 1103 v03.52
Page 32

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

3.2 / NTCIP 1101:1996 was changed with Amendment 1 in 1998. The original objects, dynObjOwner
and dynObjStatus, were deprecated in that Amendment and replaced with the dynObjConfigOwner
and dynObjConfigStatus objects as described. This ensured that each dynamic object would only
have a single owner and status at any one time.

5.1.1.3 Dynamic Objects and System Operation
STMP supports 13 dynamic objects for each agent. In theory, the management station could configure
each device with a different set of dynamic objects, but in practice, most management stations are likely
to configure similar devices with similar dynamic object definitions.

5.1.2 Other Truncations
Because there are a small number of dynamic objects defined by the protocol, the message identifier only
requires four bits rather than multiple bytes. STMP also takes advantage of other encoding and design
truncations to minimize the data packet size. For example, a password is not required because the
dynamic objects are defined at run-time; a low level of security is already provided by the fact that the
structure of the data stream is not published in a standard.

5.2 Definition
All STMP implementations shall be declared to be a management station, agent, or both.

Management stations may transmit STMP-GetRequest-PDU’s, STMP-GetNextRequest-PDU’s, STMP-
SetRequest-PDU’s, and STMP-SetRequest-NoReply-PDU’s as necessary to manage agents.
Management stations shall be able to receive and process STMP-GetResponse-PDU’s, STMP-
SetResponse-PDU’s, and STMP-ErrorResponse-PDU’s per the rules defined within Section 5.2.

Agents shall be able to receive and process STMP-GetRequest-PDU’s, STMP-GetNextRequest-PDU’s,
STMP-SetRequest-PDU’s, and STMP-SetRequest-NoReply-PDU’s per the rules defined within Section
5.2, including the ability to transmit STMP-GetResponse-PDU’s, STMP-SetResponse-PDU’s, and STMP-
ErrorResponse-PDU’s as required.

The transmission of STMP data packets shall be governed by the rules defined in Section 5.2.1 and shall
conform to the structures defined in Section 5.2.2.

5.2.1 Rules
Similar to SNMP and SFMP, STMP models all device functions as alterations (i.e., SETs) or inspections
(i.e., GETs) of variables (i.e., objects). This strategy avoids the complexities of defining a different
message type as a part of the protocol definition for each command desired.

Communication among protocol entities is accomplished by the exchange of protocol messages, each of
which may be entirely and independently represented within a single datagram. An implementation of this
protocol shall accept any valid message whose length does not exceed 484 octets. However,
implementations may support larger messages.

A management station shall take into account the variable binding list processing nature of TMP. In TMP,
all objects contained in a single set-request data packet appear to be set to their new values
simultaneously. Therefore, a management station shall not combine a state change request with a
request to set an instance value associated with that state change. If such an operation is attempted, the
operation may not be correctly processed. This rule applies to both the process to configure a dynamic
object as well as the execution of a dynamic object.

5.2.2 Elements of Procedure

NTCIP 1103 v03.52
Page 33

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

Section 5.2.2 describes the actions of a protocol entity implementing the STMP; however, it is not
intended to constrain the internal architecture of any conformant implementation.

An STMP protocol entity transmits an STMP message by passing the serialized message to a transport
service capable of sending the message to the peer protocol entity.

An STMP protocol entity receives an STMP message as follows:

a) It performs a rudimentary parse of the incoming data packet to build a structure containing the
Message Type, the Object Identifier, and the associated data as contained in the information
field. If the parse fails, e.g., if one of the fields contained invalid data, the protocol entity discards
the data packet and performs no further actions.

b) The protocol entity then processes the message according to the rules defined in Sections 5.2.2.2
and 5.2.2.3.

5.2.2.1 Initiating a Request
An STMP management station may, at any time, initiate a get or set operation by generating an STMP-
Data-Packet containing an STMP-GetRequest-PDU, an STMP-GetNextRequest-PDU, an STMP-
SetRequest-PDU, or an STMP-SetRequest-NoReply-PDU. The conditions that may result in the
management station initiating such a request are the subject of the end-application functionality and are
beyond the scope of NTCIP 1103 v03.

An STMP agent shall not issue an STMP-Data-Packet containing an STMP-GetRequest-PDU, an STMP-
GetNextRequest-PDU, an STMP-SetRequest-PDU, or an STMP-SetRequest-NoReply-PDU. This
restriction shall not preclude a single device from acting as both a management station and an agent.

5.2.2.2 Processing a Request
An STMP management station shall silently drop any STMP-GetRequest-PDU, STMP-GetNextRequest-
PDU, SFMP-SetRequest-PDU, or SFMP-SetRequest-NoReply-PDU.

The STMP agent shall process all requests in accordance with Sections 5.2.2.2.1 through 5.2.2.2.4,
including processing the request sufficiently to generate the transmission of the appropriate response
(assuming that the STMP agent has permission to transmit) within the maximum Response Time. If the
specification does not indicate the maximum Response Time, the maximum Response Time shall be 100
milliseconds plus one millisecond for each byte in the response STMP PDU Information field.

5.2.2.2.1 Processing an STMP Get Request
Upon receipt of an STMP-GetRequest-PDU, an STMP agent shall respond according to the following
rules, in order:

a) If the STMP-GetRequest-PDU contains an information field, the agent shall silently drop the data
packet.

b) The Subject Dynamic Object shall be defined to be the Dynamic Object that has a dynObjNumber
that is equal to the value of the Object Identifier field.

c) If the dynObjConfigStatus of the Subject Dynamic Object is not valid, the agent shall transmit to
the originator of the request an STMP-Data-Packet containing an STMP-ErrorResponse-PDU.
The Object Identifier field shall indicate the Subject Dynamic Object, the error-status field shall
indicate noSuchName, and the error-index field shall indicate zero (0).

d) If the Subject Dynamic Object contains a Referenced Object that is not currently instantiated, the
agent shall transmit to the originator of the request an STMP-Data-Packet containing an STMP-
ErrorResponse-PDU. The Object Identifier field shall indicate the Subject Dynamic Object, the
error-status field shall indicate noSuchName and the error-index field shall indicate the
dynObjIndex number of the problem Referenced Object.

e) If the size of the get-response would exceed a local limitation, the agent shall transmit to the

NTCIP 1103 v03.52
Page 34

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

originator of the request an STMP-Data-Packet containing an STMP-ErrorResponse-PDU. . The
Object Identifier field shall indicate the Subject Dynamic Object, the error-status fields shall
indicate tooBig and the error-index field shall indicate zero (0).

f) If the value of the Subject Dynamic Object cannot be retrieved for reasons not covered by any of
the foregoing rules, the agent shall transmit to the originator of the request an STMP-Data-Packet
containing an STMP-ErrorResponse-PDU. The Object Identifier field shall indicate the Subject
Dynamic Object, the error-status field shall indicate genErr and the error-index field shall indicate
the element within the structure that is preventing the operation, unless this is unknown, in which
case it shall indicate a zero (0).

g) If none of the foregoing rules apply, the agent shall transmit to the originator of the request an
STMP-Data-Packet containing an STMP-GetResponse-PDU such that the Object Identifier field
shall indicate the dynamic object number and the data field shall contain the Dynamic Object
Data.

5.2.2.2.2 Processing an STMP Get Next Request
Upon receipt of an STMP-GetNextRequest-PDU, an STMP agent shall respond according to the following
rules, in order:

a) If the STMP-GetNextRequest-PDU contains an information field, the agent shall silently drop the
data packet.

b) The Subject Dynamic Object shall be defined to be the Dynamic Object with a
dynObjConfigStatus of valid that lexicographically follows the number contained in the Object
Identifier field of the STMP data packet.

c) If there is no such Subject Dynamic Object, the agent shall transmit to the originator of the
request an STMP-Data-Packet containing an STMP-ErrorResponse-PDU. The Object Identifier
field shall indicate the value used in the request, the error-status field shall indicate noSuchName
and the error-index field shall indicate zero (0).

d) If the Subject Dynamic Object contains a Referenced Object that is not currently instantiated, the
agent shall transmit to the originator of the request an STMP-Data-Packet containing an STMP-
ErrorResponse-PDU. The Object Identifier field shall indicate the Subject Dynamic Object, the
error-status field shall indicate noSuchName, and the error-index field shall indicate the
dynObjIndex number of the problem Referenced Object.

e) If the size of the get-response would exceed a local limitation, the agent shall transmit to the
originator of the request an STMP-Data-Packet containing an STMP-ErrorResponse-PDU. The
Object Identifier field shall indicate the Subject Dynamic Object, the error-status fields shall
indicate tooBig, and the error-index field shall indicate zero (0).

f) If the Subject Dynamic Object cannot be retrieved for reasons not covered by any of the
foregoing rules, the agent shall transmit to the originator of the request an STMP-Data-Packet
containing an STMP-ErrorResponse-PDU. The Object Identifier field shall indicate the Subject
Dynamic Object, the error-status field shall indicate genErr, and the error-index field shall indicate
the element within the structure that is preventing the operation, unless this is unknown, in which
case it shall indicate a zero (0).

g) If none of the foregoing rules apply, the agent shall transmit to the originator of the request an
STMP-Data-Packet containing an STMP-GetResponse-PDU. The Object Identifier field shall
contain the dynamic object number of the Subject Dynamic Object and the data field shall contain
the Dynamic Object Data for that Dynamic Object.

5.2.2.2.3 Processing an STMP Set Request
Upon receipt of an STMP-SetRequest-PDU, an STMP agent shall respond according to the following
rules, in order:

a) The Subject Dynamic Object shall be defined to be the Dynamic Object that has a dynObjNumber
that is equal to the value of the Object Identifier field.

b) If the dynObjConfigStatus of the Subject Dynamic Object is not valid, the agent shall transmit to

NTCIP 1103 v03.52
Page 35

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

the originator of the request an STMP-Data-Packet containing an STMP-ErrorResponse-PDU.
The Object Identifier field shall indicate the Subject Dynamic Object, the error-status field shall
indicate noSuchName, and the error-index field shall indicate zero (0).

c) If the Subject Dynamic Object contains a Referenced Object that is only available for get
operations, the agent shall transmit to the originator of the request an STMP-Data-Packet
containing an STMP-ErrorResponse-PDU. The Object Identifier field shall indicate the Subject
Dynamic Object, the error-status field shall indicate readOnly, and the error-index field shall
indicate the dynObjIndex number of the Referenced Object.

d) If the contents of the Information field cannot be parsed to fit the SYNTAX defined for the
referenced object, the agent shall transmit to the originator of the request an STMP-Data-Packet
containing an STMP-ErrorResponse-PDU. The Object Identifier field shall indicate the Subject
Dynamic Object, the error-status field shall indicate badValue, and the error-index field shall
indicate the field number at which the parsing first failed.

e) If any of the Referenced Objects of the Subject Dynamic Object cannot be altered for reasons not
covered by any of the foregoing rules, the agent shall transmit to the originator of the request an
STMP-Data-Packet containing an STMP-ErrorResponse-PDU. The Object Identifier field shall
indicate the Subject Dynamic Object, the error-status field shall indicate genErr, and the error-
index field shall either indicate zero (0) or shall indicate the element within the structure that is
preventing the operation.

f) If none of the foregoing rules apply, the agent shall assign the requested values to the subject
Referenced Objects. Each Referenced Object assignment specified by the request shall be
effected as if simultaneously set with respect to all other assignments specified in the same
message. The agent shall then transmit to the originator of the request an STMP-Data-Packet
containing an STMP-SetResponse-PDU such that the request number field shall be the same as
that which was used in the set request.

5.2.2.2.4 Processing an STMP Set Request-No Reply
Upon receipt of an STMP-SetRequest-NoReply-PDU, an STMP agent shall respond according to the
following rules, in order:

a) The Subject Dynamic Object shall be defined to be the Dynamic Object that has a dynObjNumber
that is equal to the value of the Object Identifier field.

b) If the dynObjConfigStatus of the Subject Dynamic Object does not equal valid, the agent shall
discard the data packet and perform no further action.

c) If any of the Referenced Objects in the Subject Dynamic Object are only available for get
operations, the agent shall discard the data packet and perform no further action.

d) If the contents of the data field cannot be parsed to fit the SYNTAX defined for the referenced
object, the agent shall discard the data packet and perform no further action.

e) If the value of any of the Referenced Objects cannot be altered for reasons not covered by any of
the foregoing rules, the agent discard the data packet and perform no further action.

f) If none of the foregoing rules apply, the agent shall assign the requested values to the
Referenced Objects. Each Referenced Object assignment specified by the request shall be
effected as if simultaneously set with respect to all other assignments specified in the same
message. The agent shall not transmit any response.

5.2.2.3 Confirmation of Request
An STMP agent shall silently drop any STMP-Data-Packet containing an STMP-GetResponse-PDU,
STMP-SetResponse-PDU, or STMP-ErrorResponse-PDU.

Upon receipt of a STMP-GetResponse-PDU, the management station should parse the data field into the
appropriate ASN.1 structure. If the contents of the data field cannot be parsed properly, the error should
be logged and the end-application notified; otherwise, the management station should provide the end-
application with the parsed data.

NTCIP 1103 v03.52
Page 36

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

Upon receipt of an STMP-SetResponse-PDU, the management station shall parse the data into the
appropriate ASN.1 structure. If any information field is present, the PDU shall be silently dropped. It
should then remove the associated request from the outstanding request list. If the management station is
unable to find the associated request, it should log the error and notify the end-application.

Upon receipt of an error message, the management station should log the error, and notify the end-
application.

5.2.3 STMP Data Packet Structure
The STMP-Data-Packet is defined to have a header field, defined in Section 5.2.3.1, and an information
field (or PDU), defined in Section 5.2.3.2. The header field can be further subdivided into a PDU Format
Bit, which is always one, a message type bit field, which is three bits in length, and a dynamic object
identifier bit field, which is four bits in length. This is shown in Figure 3.

Figure 3 STMP PDU Fields

5.2.3.1 Header Field
The header field shall be one byte in length. It is the same byte used by TMP to multiplex the three
component protocols into a single structure. As such, Table 1 provides a mapping between the possible
values for this field and the proper meanings. Table 4 provides a further explanation of the Header Field
specifically for STMP.

Table 4 STMP Header Field Explanation

Bit Contents Description
7 PDU Format
 0 Reserved by TMP for SNMP and any other future uses.
 1 Indicates that packet is STMP or SFMP.
6-4 Message Type Note: The following descriptions for this (Message Type) field apply only to

STMP packets (i.e., when the PDU Format is 0x1 and Object ID is
between 0x0001 and 0x1101).

 000 An STMP-GetRequest-PDU is contained in the packet.
 001 An STMP-SetRequest-PDU is contained in the packet.
 010 An STMP-SetRequest-NoReply-PDU is contained in the packet.
 011 An STMP-GetNextRequest-PDU is contained in the packet.
 100 An STMP-GetResponse-PDU is contained in the packet (positive ACK).
 101 An STMP-SetResponse-PDU is contained in the packet (positive ACK).
 110 An STMP-ErrorResponse-PDU is contained in the packet.
 111 Reserved by TMP for future use.
3-0 Object ID
 0000 Reserved by TMP for SFMP, See Section 4.
 0001-1101 ID of STMP "dynamic object"
 1110 Reserved by TMP for future use.
 1111 Reserved by TMP for future use.

5.2.3.2 PDU Information Field
The PDU Information field shall be empty for STMP-GetRequest-PDU’s, STMP-GetNextRequest-PDU’s,
and STMP-SetResponse-PDU’s.

NTCIP 1103 v03.52
Page 37

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

The PDU Information field for STMP-GetResponse-PDU’s, STMP-SetRequest-PDU’s, and STMP-
SetRequestNoReply-PDU’s shall be the Dynamic Object Data structure as defined in Section 5.2.4.3.

The PDU Information field of an STMP-ErrorResponse-PDU shall only contain the error status and error
index information according to the following structure:

 STMP-ErrorResponse-PDU ::=
 SEQUENCE {
 error-status
 ErrorStatus,

 error-index
 ErrorIndex
 }

The precise definition of these fields is identical to that defined for SFMP; see Sections 4.2.4.6 and
4.2.4.7.

5.2.4 Dynamic Object Configuration
As discussed in Section 5.1.1, the dynamic object tables use the dynObjVariable field to define the
content of each dynamic object; each object referenced by a dynObjVariable is termed a Referenced
Object. The formal definitions of dynamic object tables are contained in Annex A.

5.2.4.1 Configuration Entry Status
The ConfigEntryStatus type shall be used to manage the Dynamic Object Definition (dynObjDef table)
and Dynamic Object Configuration (dynObjConfigTable) tables. For each dynamic object there is a
columnar object that is defined with a SYNTAX of ConfigEntryStatus.

All other columnar objects for the subject dynamic object shall have operations limited by the current
value of the ConfigEntryStatus object in the row. The meaning of the values is as follows:

If the current state of the configEntryStatus object is invalid, the information in the corresponding row of
the dynObjConfigTable and the corresponding rows of the dynObjDef table with the same index
dynObjNumber shall be considered undefined. Setting the status object to invalid has the effect of
invalidating and clearing the corresponding rows of the Dynamic Object Definition Table. It is
implementation specific whether the agent clears the values contained in the invalidated rows or de-
allocates the memory associated with the invalidated rows. When in the invalid state, the agent shall
reject any request to go to the valid state.

If the current state of the configEntryStatus object is underCreation, the memory for the corresponding
row of the dynObjConfigTable and the corresponding rows of the dynObjDef table with the same index
dynObjNumber shall have been allocated, but may contain some invalid data. When in this state, the
management application is allowed to modify the values of the objects contained in the associated rows
of the table. Once this operation is completed, the management station may set the state to valid;
alternatively, the management station may cancel the operation by setting the state to invalid.

If the current state of the configEntryStatus object is valid, the corresponding row of the
dynObjConfigTable and the corresponding rows of the dynObjDef table with the same index
dynObjNumber contain information that is believed to be valid.

Table 5 indicates the actions that shall take place upon receipt of a set request to change the state of
dynObjConfigStatus. The value of each cell in the table shows the result of receiving the indicated set
request (column headings) when the device is in the indicated current state (row headings).

NTCIP 1103 v03.52
Page 38

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

Table 5 State Transition for ConfigEntryStatus

 Requested State
 Invalid underCreation Valid

C
ur

re
nt

St

at
e

invalid invalid (1) underCreation (6) invalid (3)

underCreation invalid (2) underCreation (3) valid (4) or
underCreation (5)

valid invalid (2) valid (3) valid (1)

Notes:
(1) No action takes place and response indicates noError.
(2) The state changes to invalid; all entries associated with the ConfigEntryStatus
object are deleted or cleared and response indicates noError.
(3) No action takes place but response indicates badValue.
(4) If Dynamic Object Validation succeeds then state changes to valid and
response indicates noError. (See Sec. 5.2.4.2.)
(5) If Dynamic Object Validation fails then state remains underCreation and
response indicates genErr. (See Sec. 5.2.4.2.)
(6) The state changes to underCreation and the response indicates noError.

Upon receipt of a set request for the valid state when in the underCreation state, the agent shall attempt
to validate the dynamic object data contained in the associated rows of the dynObjDef table with the
same dynObjNumber of the associated request. If the validation is successful, the state shall change to
valid, otherwise, the state remains in the underCreation state and the device shall return a genErr.

5.2.4.2 Dynamic Object Validation
The configuration of a dynamic object shall be validated prior to using the dynamic object; the validation
process is activated as defined in Section 5.2.4.1. When validating the configuration of a dynamic object,
an agent shall perform the following consistency checks:

a) For the row where dynObjIndex equals 1, the dynObjVariable shall point to a Referenced Object.
b) For each value of dynObjIndex other than 1, the associated dynObjVariable shall be set to its

Default Value, or both the associated dynObjVariable and the previous dynObjVariable (i.e.,
where dynObjIndex is one less) shall point to a Referenced Object.

Failure to pass these consistency checks shall prevent the state from changing to valid. Once defined and
validated, the data referenced by the dynamic object shall be accessible via STMP.

5.2.4.3 Dynamic Object Data Structure
The Dynamic Object Data Structure, as used within the PDU Information field of some STMP messages,
shall consist of a series of component fields, each encoding one Referenced Object. The component
fields shall be encoded in order, according to the associated dynObjIndex, with the first field encoding the
value of the first Referenced Object of the Dynamic Object, and the last field encoding the value of the
last Referenced Object of the Dynamic Object. Each component field shall consist of the OER encoding
of the subject component.

5.3 Examples
The following examples demonstrate:

a) the process to configure a dynamic object;

NTCIP 1103 v03.52
Page 39

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

b) the retrieval of the configured dynamic object through an STMP get; and
c) the setting of the dynamic object through an STMP set.

5.3.1 Configuring a Dynamic Object
Figure 4 demonstrates the process to configure a dynamic object to consist of the following objects, in
order: (1) globalTime.0, (2) controller-standardTimeZone.0, and (3) eventClassDescription.1. The
selection of these three objects for the example provides a robust example of how the STMP messages
are encoded in Sections 5.3.2 and 5.3.3. It is assumed that the encoding of the referenced SNMP
messages is understood, as there are a variety of textbooks on this subject matter.

: Controller
Management

Station

SnmpSet ()
dynObjConfigStatus.3 = invalid

SnmpResponse ()

SnmpSet ()
dynObjConfigStatus.3 = underCreation

SnmpResponse ()

SnmpSet ()
dynObjConfigOwner.3 = “Sample”
dynObjVariable.3.1 = globalTime.0
dynObjVariable.3.2 = controller-standardTimeZone.0
dynObjVariable.3.3 = eventClassDescription.1.1

SnmpResponse ()

SnmpSet ()
dynObjConfigStatus.3 = valid

SnmpResponse ()

ValidateDynObjConfiguration()

Clears any
existing definition

A genError is
returned if the
validation failed.

Figure 4 Configuring a Dynamic Object

5.3.2 Getting a Dynamic Object
A management station is able to retrieve the dynamic object defined above by issuing the one-byte
STMP-GetRequest-PDU, as follows:

83 stmp-get for dynamic object #3

This command causes the agent to generate an STMP-GetResponse-PDU as follows:

NTCIP 1103 v03.52
Page 40

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

C3 stmp-get-response for dynamic object #3
 Information Field
3A 24 63 20 variable 1 = globalTime.0 = November 29, 2000 at 2:00 am UTC
FF FF B9 B0 variable 2 = controller-standardTimeZone.0 = -18000 = EST
06 53 61 6D 70 6C 65 variable 3 = eventClassDescription.1 (6 bytes) = “Sample”

5.3.3 Setting a Dynamic Object
Likewise a set operation would be of the following form:

93 stmp-set-request for dynamic object #3
 Information Field
3A 24 63 20 variable 1 = globalTime.0 = November 29, 2000 at 2:00 am UTC
FF FF B9 B0 variable 2 = controller-standardTimeZone.0 = -18000 = EST
06 53 61 6D 70 6C 65 variable 3 = eventClassDescription.1 (6 bytes) = “Sample”

And the response would be a single byte as follows:

D3 stmp-set-response for dynamic object #3

NTCIP 1103 v03.52
Page 41

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

Section 6
NTCIP Traps

With the introduction of Ethernet communications to ITS field devices through both wired and wireless
infrastructures, it is now possible to consider alternative communications techniques for monitoring the
status and the collection of data from field devices. Section 6 describes a technique for using the concept
of Traps to support this capability.

6.1 Overview
Traps have been established to allow a managed device to transmit an unsolicited message to a
management station based on a monitored change of state that occurs within the managed device. For
this purpose, the event reporting mechanism (previously described in NTCIP 1201 v03 and now also
reflected in Annex A.7.2) is used to configure what constitutes a change of state (or trigger) and to identify
what data is to be transmitted when the change of state is detected; this section describes the data
elements and mechanisms by which trap data is to be transmitted to the management station. If the event
triggered data is to be transmitted upon detection, the communications medium between the field device
and the management station shall be able to detect and recover from packet collision (for example,
Ethernet) or avoid such packet collisions altogether.

6.1.1 Contraints on Timing and Atomic Operations
The following constraints should be kept in mind when designing a communication system based on traps
as defined in NTCIP 1103 v03:

a) The resolution for trap timestamps is one millisecond, but a particular device may not be able to
timestamp events with one-millisecond accuracy. The eventTimeLatency parameter provides an
estimate of the latency management stations can expect in event timestamps.

b) It is important for correct operation of the system, comprising the device and the management
station, that atomic data updates be reported consistently in traps. This consideration prompts the
following guideline:

If

i. an operation takes place within a traffic device that causes changes to multiple objects
O(1) … O(n); and

ii. the traffic device considers this operation to be atomic on the objects O(1) … O(n) (that
is, the traffic device applies either all or none of the changes to these objects),

then
i. any entry in the eventLogTable that reports the value of more than one of the objects

O(1)…O(n) (for example, by using the report block mechanism described below) shall
report these values consistently with respect to the atomic operation. That is, in any
particular value of the eventLogValue object, either the value of all objects included in the
event shall be reported as if the atomic operation had not begun, or the value of all
objects included in the event shall be reported as if the atomic operation had completed.

ii. If a single eventLogValue contains a value of O(m) as it existed prior to the atomic
operation, and a value of O(n) as it exists after the atomic operation, then the traffic
device is not in compliance with NTCIP 1103 v03.

The following example concretely captures the intuitive meaning of this guideline:

NTCIP 1202 v03 (Actuated Signal Control) defines objects named phaseStatusGroupRed,

NTCIP 1103 v03.52
Page 42

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

phaseStatusGroupYellow, and phaseStatusGroupGreen, which contain bitmasks reporting the
collection of signal phases showing red, yellow, and green indications, respecitively. These
objects shall be maintained in a synchronized fashion by the intersection controller – it is not
possible for the bit representing a particular phase to be set to “1” in more than one of these
objects simultaneously, because that would indicate a physical state that is prohibited by the
design of the signal hardware. The signal controller may temporarily violate this constraint while
updating its internal state, but such violations shall never be visible to a management station. A
management station requesting more than one of these phase status group objects in a single
GET request shall see any given bit set in at most one of the three objects. Similarly, any
eventLogValue object containing more than one of these three objects shall satisfy the same
condition.

Typically a traffic device has many operations that it treats atomically. Attempting to comprehensively list
these operations both strays beyond the scope of NTCIP 1103 v03, and may impose unreasonable
constraints on traffic device implementers. It is recommended that device-specific standards that depend
upon NTCIP 1103 v03 explicitly state dependencies between different data objects that would cause
changes in those objects’ values to be considered atomic as described here.

6.1.2 Trap Channels
The trap mechanism uses the concept of trap channels that can be used to send the event triggered
information to a specific management station. Different retry and timing settings can be applied to each
trap channel individually. The trap mechanism also includes a separate queue for each trap channel.
Different types of events can be sent through the same trap channel and the same event can be sent
through multiple trap channels. The management station characteristics (e.g. port number, management
station name [see Section A.6.2]) are configured for each trap channel, and multiple trap channels can be
configured to send data to the same management station. This allows for the development of very flexible
reporting schemes that can be dynamically configured based on the available bandwidth or the cost
structure for a specific communications medium. For example, periodic signal changes (e.g.
phaseStatusGroupTable contents, as defined in NTCIP 1202 v02) could be deemed unimportant whereas
the notification of a cabinet alarm (e.g. unitAlarmStatus1, as defined in NTCIP 1202 v02) might be
considered mission critical. Thus, a management station may eliminate acknowledgement for phase
status changes but require acknowledgement (with a specific number of retries) for such mission critical
data as cabinet alarms and cabinet flash. This flexibility can be used for a variety of purposes and can
reduce the amount of polling required to monitor the operation of a remote device.

6.1.3 Architectural considerations
The trap mechanism is intended to layer on top of the existing event reporting mechanism (reference
Section A.7.2 herein) with some additions and restrictions. When an event is “detected”, it may be logged
depending on the configuration of the event reporting mechanism (reference eventLogConfigEntry in
A.7.2). But it may also, or instead, cause the transmission of a trap message based on entries in the
trapTable. Note that the trap mechanism is independent of the log mechanism; it is possible to send a
trap message, simply log the event, or both trap and log an event, and the depth of the log and/or trap
queues are managed separately.

Traps require cooperative management within a system (or, for example, among systems within the same
region) context so that multiple management stations do not interfere with each other’s trap/logging
requests (i.e. configuration of the Trap Management Table, the Trap Table, and the Event Log
Configuration Table).

Note: A single detected event could cause a trap message to be sent to multiple management
stations with different retry options. This means that each management station needs to manage
its “own” rows in the trapMgmtTable. This requires that conventions such as Standard Operating
Procedures (SOPs) for the assignment of traps be managed within a system context to avoid
confusion and over-writing of the Trap Management Table by other management stations within a

NTCIP 1103 v03.52
Page 43

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

system.

Note: Although traps can be used for peer-to-peer communications, there are no standards
governing the management station/field device application requirements. Some devices include a
backup timer, e.g. unitBackupTime from NTCIP 1202 v02, that requires the TMC to set one of the
specified objects periodically to maintain control, otherwise, the device times-out and reverts to
local operation.

Several additions and restrictions have been added to NTCIP 1103 v03 to make both logging and trap
support more flexible. The first is the concept of configurable “watch blocks” as objects for use in the
eventConfigCompareOID in the eventLogConfigEntry. These “watch blocks” allow an event to be
triggered whenever there is a change in any of the elements contained in the “watch block”. These are
similar to the dynamic objects in STMP, but have been separately defined to simplify the software within
the field device. Each "watch block" has an assigned Object ID which can be used in the
"eventConfigCompareOID" column of an eventLogConfigEntry. When “watch blocks” are used as part of
an event trigger, the eventConfigMode is restricted to the onChange (2) value since there is no pre-
determined mechanism for combining objects for any sort of logical or mathematical evaluation. Attempts
to create an event table entry using a “watch block” with any mode other than onChange (2) shall return
a general error (genError).

In addition to the watch blocks, the triggered events can use a configurable block object for the definition
of the data to be logged (eventConfigLogOID) in the eventLogConfigEntry. These have been labeled
“report blocks” and have been defined to be similar to the STMP dynamic objects. Each "report block"
object has an assigned Object ID which can then be used in the "eventConfigLogOID" of an
eventLogConfigEntry. The management station can configure these “report blocks” as a collection of
single valued objects that are then combined into a single trap or event log entry. This means that a
triggered event can cause the logging and/or the transmission of a trap message that contains a number
of objects.

In addition to the above, the trap mechanism described herein includes a provision for aggregation that
allows a field device to collect the trap data for events which occur over a period of time, and send them
in a single trap message. This aggregation mechanism allows further reduction in the number of
messages and the impact of the trap message overhead. This capability is identified as trap chains and is
described in Section 6.2.4 (Aggregation and Trap Mode). The combination of the basic trap structure plus
the aggregation feature provides a mechanism for managing field communications in an IP ethernet or IP
wireless environment. While it can be used with a traditional Point to Multi-Point Protocol (PMPP), it has
been specifically designed for use in an IP ethernet or IP wireless environment. It allows the management
station to configure the causes for message transmission and maintain the fidelity of once-per-second
data without polling the device every second to determine its status; hence providing a mechanism that
can reduce the bandwidth required to monitor an ITS device.

In summary, the trap mechanism described herein allows a management station to configure triggers in
terms of single or block objects, identify the nature of the trigger (for single valued objects or on change
for block objects), and cause the logging and/or transmission and/or aggregation-and-subsequent-
transmission of a single valued or a block object as configured.

6.1.4 Conformance
To be conformant to the trap definitions defined in NTCIP 1103, an NTCIP agent shall only generate traps
according to the procedures in this standard.

An NTCIP agent shall not generate any of the generic SNMP traps under any condition, nor shall it
generate any enterprise-specific trap other than the trapEvent trap.

Note: A management station may receive a trap other than the NTCIP 1103 v03 eventTrap. Any

NTCIP 1103 v03.52
Page 44

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

other trap is now considered a protocol error, but was allowed in NTCIP 1103 v01 devices, and
thus a management station should be prepared for this condition and simply drop the trap when
received.

6.2 Detailed Discussion
SNMP provides a “trap” mechanism to allow an agent to notify one or more management stations of
exceptional events or requested changes in controller operation.

While traps can be a useful tool in monitoring unusual conditions, they introduce the potential for agents
to flood the network with “unusual condition” messages. The trapMgmtTable includes a
trapMgmntAntiStreamRate parameter that can be used to minimize the impact of unusual circumstances
and errors.

Two types of traps are specified in NTCIP 1103 v03: NOACK and ACK. NOACK traps shall not be
acknowledged by the management station; whereas ACK traps expect acknowledgement from the target
management station, and the agent retransmits the trap message (based on configurable retry
parameters), if an acknowledgement is not received within the configured within the configured allowable
number of retries. A special mode of NOACK traps called “force” is available that has the ability to
transmit a trap even if the link state is in the error condition.
Additionally, aggregation of both NOACK and ACK traps into trap chains is supported to allow the
management station to direct the field device to accumulate both NOACK or ACK trap event data over a
configurable period of time (trapAggregationTime). When either this period of time has elapsed, the
maximum number of traps have been added to the trap chain (trapMaxAggregationEvents), or the
maximum physical size of a trap chain has been reached (trapMaxAggregationSize), the trap chain is
transmitted as described in the section on aggregation.

Finally, traps may be configured to be queued or not queued. Queued traps are placed onto a queue for
the respective trap channel until the trap channel is available for transmission, whereas traps that are not
queued may be dropped (lost) if they cannot be immediately transmitted.

Figure 5 shows the major structures that manage the NTCIP traps:

a) the Trap Management Table (trapMgmtTable), which defines the destination management
stations to which traps are to be sent;

b) the Event Log Configuration Table (eventLogConfigTable), which defines the conditions under
which trap messages are to be generated for transmission;

c) the Trap Table (trapTable), which defines the precise conditions under which traps are to be
transmitted;

d) the Logical Name Translation Table (logicalNameTranslationTable), which defines
communication network addresses;

e) the Community Name Table (communityNameTable), which defines the community names to be
used in trap messages; and

f) the eventClassTable (eventClassTable), which defines constraints on the event logging
mechanism which can affect trap activity.

The trapMgmtTable uses the logicalNameTranslationTable (see Section A.6.2) to identify the IP address
of the management station and the communityNameTable (see Section A.8.3) to determine what
community name to use when transmitting traps to the management station. Systems using the trap
mechanism are required to also provide the appropriate entries in these tables.

The trap configuration also depends upon the eventClassTable, which shall be correctly configured in
order to configure the eventLogConfigTable. Event classes are used to control whether a particular
eventLogConfigTable entry cause a log entry, a trap message, or both to be generated when the event
occurs.

NTCIP 1103 v03.52
Page 45

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

logicalNameTranslationTable

trapMgmtTable trapTable

eventLogConfigTable

[trapMgmtManagerIndex (index)]
[eventConfigID (index)]
trapMode
trapAggregationTime
trapCounter

[eventConfigID (index)]
eventConfigClass
eventConfigMode
eventConfigCompareValue
eventConfigCompareValue2
eventConfigCompareOID
eventConfigLogOID
eventConfigAction
eventConfigStatus

communityNameTable

[communityNameIndex (index)]
communityNameUser
communityNameAccessMask

[trapMgmtManagerIndex (index)]
trapMgmtManagerPointer
trapMgmtCommunityNamePointer
trapMgmtApplicationProtocol
trapMgmtTransportProtocol
trapMgmtPortNum
trapMgmtMaxRetries
trapMgmtRepeatInterval
trapMgmtDelta
trapMgmtQueueDepth
trapMgmtLinkStateStatus
trapMgmtAntiStreamRate
trapMgmtErrStatus
trapMgmtLostTraps
trapMgmtRowStatus
trapMgmtSeqNum
trapMgmtSeqNumAck

eventClassTable

[eventClassNumber (index)]
eventClassLimit
eventClassClearTime
eventClassDescription
eventClassNumRowsInLog
eventClassNumEvents

[logicalNameTranslationIndex (index)]
logicalNameTranslationLogicalName
logicalNameTranslationNetworkAddress
logicalNameTranslationStatus

Figure 5 Trap Management Configuration Structure

The trapMgmtTable identifies the parameters for each trap channel. The eventLogConfigTable identifies
the trigger (i.e. what is monitored) and what is reported. The trapTable links events in the
eventLogConfigTable to channels defined in the trapMgmtTable using the indices as shown. The use of
each of these variables is included in the text of the object description. One or more management stations
may configure an agent to monitor events of interest.

The trapTable is dynamic, and the rows within it are not directly managed by management stations. A
row logically exists in the trapTable for each unique pair (trapMgmtManagerIndex, eventConfigID), where
trapMgmtManagerIndex is the index of a row in the trapMgmtTable whose trapMgmtRowStatus is not

NTCIP 1103 v03.52
Page 49

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

7 – noack_Aggr: NOACK, the trap data (eventConfigID, timestamp, and reported
data) are added to the noackTrapChain. Once a chain
termination condition occurs, the noackTrapChain is immediately
sent to the management station if the trapMgmtLinkStateStatus
is READY or PENDING. See Section 6.2.4 for a detailed
discussion of aggregation operation including chain termination
conditions.

A management station should monitor the trapMgmtLinkStateStatus of rows in the trapMgmtTable that
refer to logicalNameTranslationTable rows containing the management station’s address, so that it can
address error conditions that prevent traps from being sent. A forced trap can be sent, say every 5-20
minutes, trying to advise the management station of the link status. The repeat time should be long
enough not to cause any flooding problem.

Note: A forced trap is always sent to the management station. It could be the last chance for the
link or it may be used to keep the link alive by alerting the management station periodically of the
existence of the remote station or it could be used to force the transmission of a message to
notify the management station of an impending problem.

6.2.4 Aggregation and Trap Chains
The NTCIP trap mechanism allows for a number of different modes of operation to support a wide variety
of potential applications. Part of this flexibility includes the concept of aggregation which allows the data
from multiple events to be “collected” over time, until a specific event occurs, until enough events have
occurred, or until the aggregation buffer has been filled. The data collected from these multiple events are
assembled into a trapChain which is then transmitted as a single trap PDU.

The NTCIP trap mechanism supports aggregation for both ACK traps and NOACK traps separately. Both
ackTrapChains and noackTrapChains are internal constructs to the trap support mechanism and they
collect traps configured with trap mode ack_Aggr and noack_Aggr respectively. Traps are configured to
start an internal aggregation timer depending on the value of the trapAggregationTime object entry in the
trapTable. If the value is zero (0), then this is a chain termination condition and the trap is simply added to
the appropriate chain and transmission of the chain is initiated as described later. If the value is not zero
(0), then a timer is started for that trap and it is added to the appropriate chain; ack_Aggr (6) mode
causes the trap data to be added to the ackTrapChain, whereas noack_Aggr (7) causes the data to be
added to the noackTrapChain. For each additional aggregation trap that is triggered, its timer is also
started. When the aggregation timer for any trap that was added to the trap chain expires, then a chain
termination condition occurred and the whole trap chain (ack or noack) is sent to the trap channel where
its transmission is initiated as described later.

In addition to the preceding, two other chain termination conditions cause the processing of a trap chain.
If the new event trap causes the chain size to reach trapMaxAggregationEvents or to exceed
trapMaxAggregationSize, then the chain is processed for transmission as described.

The actual transmission of trapChains depends on their mode. noackTrapChains are transmitted
immediately following completion of any active transmission on the trap channel provided the
trapMgmtLinkStateStatus is either READY or PENDING when its transmission is started. If the
trapMgmtLinkStateStatus is ERROR then a noackTrapChain continues to grow waiting for the status to
be changed to either READY or PENDING. However, if the noackTrapChain grows too large and exceeds
eithertrapMaxAggregationEvents or trapMaxAggregationSize while waiting for the trap channel, then the
noackTrapChain is dropped and a new chain started when the next noack_Aggr trap occurs.

Although not queued, ackTrapChains are conceptually double buffered in that once the chain is complete
it is transferred from the collection buffer to a transmission buffer (internal construct, over-written if
necessary) provided it is not currently being transmitted. If the transmission chain is currently being

NTCIP 1103 v03.52
Page 51

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

trap1 – aggrTime1

trap2 – aggrTime2

trap3 – aggrTime3

trap4 – aggrTime4

trap5 – aggrTime5

trapChain sent

time

Figure 6 Example—Trap Chain Aggregation Time

Figure 6 provides an example of the following conditions:

a) trap1: one trap in the trapChain; aggregation time of the trapChain = aggrTime1
b) trap2: two traps in the trapChain; aggregation time of the trapChain = aggrTime2
c) trap3: three traps in the trapChain; aggregation time of the trapChain = aggrTime2
d) trap4: four traps in the trapChain; aggregation time of the trapChain = aggrTime2
e) trap5: five traps in the trapChain; aggregation time of the trapChain = aggrTime5

The trapAggregationTime expires at the arrow due to the time specified for trap5, and the chain is
therefore processed – i.e. passed to the trap channel where it is handled according to the type of chain
(ACK or NOACK) and the condition of the channel (READY, PENDING, ERROR).

6.2.5 Anti-Streaming Rate
To prevent a device from flooding the network with trap messages under unusual circumstances (e.g.
chattering relay contacts on the input to a monitored status block), an anti-streaming parameter
(trapMgmtAntiStreamRate) has been included in the Trap Management Table (trapMgmtTable). The
managed device shall not initiate the transmission of trap messages on any specific trap channel more
frequently than this number during any one minute period. The time-out for this is not expected to be a
sliding minute, but rather clocked based on the minute transitions of the device’s internal clock.

In a case where the anti-streaming requirement is blocking transmission of the trap to the management
station, all further traps generated for that channel shall be dropped or queued dependent on their trap
mode (this includes force mode traps) and the agent shall set the “Trap channel anti-streaming mode
activated” bit in trapMgmtErrStatus. At the start of the next minute, the agent removes the anti-streaming
block on the channel and clears the “Trap channel anti-streaming mode activated” bit in
trapMgmtErrStatus. This process may cause bursts of traps to be sent from the affected channel at the
top of each minute.

NTCIP 1103 v03.52
Page 52

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

6.2.6 Sequence Number
Each trap channel (i.e. row in the Trap Management Table) includes a trap sequence number
(trapMgmtSeqNum) which is a single byte entry that increments for each new trap message sent.
However, it is important to recognize that because of the mapping from the Trap Table to the Trap
Management Table, different modes of operation may be sent through the same channel – some which
are ACK and some which are NOACK. Each new trap which is transmitted (for the first time) causes the
trapMgmtSeqNum to be incremented by one. If the trap channel times out and retries a trap message,
subsequent attempts use the same trapMgmtSeqNum that was used for the first attempt. Because some
NOACK traps could be processed and transmitted while the channel is waiting (PENDING) for an
acknowledgement, it is possible for several NOACK traps to be sent through, and each one increments
the trapMgmtSeqNum. However, when the channel attempts to retransmit the older message awaiting
acknowledgement, it shall use the trapMgmtSeqNum that was initially used by that trap message.

By way of example, it is possible for an ACK trap with trapMgmtSeqNum = 120 to be followed by NOACK
(or force mode) traps numbered 121 and 122 being transmitted from different event table entries while
waiting for an acknowledgement. When the next ACK trap is sent, in this case, it would use
trapMgmtSeqNum=123 for the next trap regardless of whether it is a ACK or NOACK trap. However, the
trapMgmtSeqNum is only incremented when a trap message is actually sent; aggregation occurs before
the traps are sent to the trap channel and hence have no effect on the trapMgmtSeqNum until the chain is
actually transmited.

6.2.7 The Trap Acknowledgement Process
When an ACK mode trap is transmitted, the trapMgmtLinkStateStatus is set from READY to PENDING by
the agent. All ACK mode traps shall be acknowledged by the management station. This is accomplished
by the management station setting the trapMgmtSeqNumAck object to the sequence number of the trap
being acknowledged. If the value set is equal to either the sequence number of the last ACK trap sent to
the management station or zero (0), then the agent resets the trapMgmtLinkStateStatus back to READY,
and the next ACK trap PDU is sent when ready/available. If the value set is not equal to the sequence
number of the last ACK trap sent to the management station or zero (0), the link status shall remain
unchanged. The set-request issued by the management station shall be handled as a normal SNMP set
operation.

Setting the trapMgmtSeqNumAck object to 0 is intended as a means of resetting the link when sequence
number synchronization between agent and management station is lost. Under normal circumstances,
the management station shall acknowledge a trap by setting the trapMgmtSeqNumAck object to the value
of the last trap it received, which ordinarily corresponds to the last ACK-mode trap sent by the agent.
However, if a trap is lost in transit, the management station does not necessarily know the last sequence
number sent by the agent. In this situation, the management station can return the
trapMgmgLinkStateStatus to READY by setting the trapMgmtSeqNumAck object to zero (0).

6.3 Trap Processing
NOACK traps are used to allow the field device to transmit a trap packet based on a triggered event
without the expectation of an acknowledgement or any guarantee of delivery. Transmission of NOACK
traps, whether chains or single traps, does not cause the trap channel status to change from READY to
PENDING.

If the communications channel status for the trap message is ERROR, then the message remains on the
queue until the channel is available to resume transmission. The trap channel queue is a first-in-first-out
(FIFO) queue and once the queue becomes full, the oldest trap data shall be overwritten by the newest
trap message.

ACK traps are used to allow the field device to transmit a trap packet based on a triggered event with the
expectation of an acknowledgement to ensure delivery, within certain limits. Trap messages are sent

NTCIP 1103 v03.52
Page 53

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

through a trap channel” and each trap channel can have different retries, timing constraints, queue
depths, and be directed to the same or different management stations as identified in the trapMgmtTable.

Trap channels can be in one of three states: READY, PENDING, ERROR. In the READY state, the agent
is available to send a trap as soon as it is available. Once the agent submits the trap to the transport
protocol (whether it is blocked or not) the trap channel state is changed to PENDING by the agent. The
trap channel state remains in PENDING until either the management station acknowledges the trap (see
Section 6.2.7), or the agent exhausts the retries, and changes the state to ERROR, and removes the trap
message from the queue if necessary. See Table 6 and Figure 7.

Note: There is a potential race condition here in that the agent may be in the process of changing
the state from PENDING to ERROR at the same instance that the management station is sending
a message to acknowledge the trap PDU. There is also a potential race condition when the agent
initiates a retry transmission while the management station is acknowledging the trap PDU. The
management station shall recognize the re-transmission by examining the contents of the trap
PDU and discard duplicate messages.

Table 6 Trap Mode Processing Summary

trapMode

trapMgmtLinkState
READY PENDING ERROR

0 – disabled D D D
1 – forced T T T
2 – ack_noQ T,R D D
3 – ack T,R Q Q
4 – noack_noQ T T D
5 – noack T T Q
6 – ack_Aggr T,R B B
7 – noack_Aggr T T D
Note: for modes 6 & 7, the action shown occurs when the
chain is transferred to the trap channel for processing
T=Trap PDU is transmitted; Q=Trap PDU is queued for
transmission; D=Trap PDU is dropped; R=Triggers Retry
Mechanism; B=Chain is “double buffered”

NTCIP 1103 v03.52
Page 54

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

This is the initial condition of the channel. Channel is
inactive and there is nothing to transmit. Event
messages are either transmitted or added to the bottom
of the queue. ACK messages cause the status to
change to PENDING when the PDU is transmitted.

When the management station
acknowledges the trap message (or
resets the acknowledgement
subsystem), the channel is restored to
the READY state and normal
operation.

If the channel is in the ERROR state, ACK and
NOACK messages are put onto the bottom of the
queue for later transmission. ACK_NOQ,
NOACK_NOQ, and NOACK_AGGR traps are
discarded. Force traps are transmitted.

If all of the retry counters and timeout
counters expire without the management
station acknowledging the trap, the
device automatically sets the state to
ERROR

PENDING ERROR

READY

If the queue is not empty, the trap channel sends the
oldest message to the management station, starts the
timers and retry counters, and sets the state to
PENDING for ACK traps

When the management
station receives the trap
message, it acknowledges the
trap to reset the channel back
to the READY state.

Figure 7 Trap Management State Transition Diagram

6.3.1 Queue Management
Certain trap messages are queued until they can be transmitted. For ACK messages, they are queued
until acknowledged. The queue shall be First-in-first-out (FIFO). Queues are maintained for each row of
the trapMgmtTable and to the number specified in the trapMgmtQueueDepth. It is up to the device to
allocate (or provide) sufficient memory space to store all of the data necessary to construct the trap
message for the number of events specified in the trapMgmtQueueDepth parameter.

If the agent generates a trap and the queue for the respective trapChannel is full the agent shall take the
following steps:

a) set the “Trap Channel queue full” error bit in the trapMgmtErrStatus entry
b) increment the trapMgmtTrapsLost variable
c) overwrite the oldest trap with the newest trap message.

6.3.2 Limitations and Qualifications
The watchBlocks and reportBlocks are similar to dynamic objects as each has an OID which can be used
for the event table to identify what triggers a trap or log (watchBlock), and what is transmitted or logged
(reportBlock). The user may specify single valued objects or reportBlocks to be reported either as single
traps or as part of aggregated traps.

However, specifications that use the trap mechanism should recognize that some reasonable limitations
are required as to the number of single valued objects that are allowed in watchBlocks or reportBlocks,
and the depth of the queues and chains. Minimum values for the trap configuration parameters are
identified in Table 7. A conformant implementation may provide larger values.

NTCIP 1103 v03.52
Page 55

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

Table 7 Trap Configuration Parameter Minimum Values

Object Identifier Range Limit Discussion

trapMgmtMaxEntries 32 Maximum of 32 entries in the trapMgmtTable

trapMaxAggregationEvents 64 No more than 64 entries would be stored in each trap
chain (noack_Aggr and ack_Aggr). (Note that a
reportBlock is a single entry).

trapMaxAggregationSize 1023 No more than 1023 bytes would be used to store each
of the trap aggregation chains.

maxWatchObjects 150 The maximum aggregate number of single valued
objects that can be included in all of the watch blocks

maxWatchBlocks 16 Maximum number of watch blocks that can be
configured

maxReportObjects 150 The maximum aggregate number of single valued
objects that can be included in all of the report blocks

maxReportBlocks 16 Maximum number of report blocks that can be
configured

trapTableMaxEntries 64 Maximum number of trap table entries

6.4 Trap PDU
The structure of the trap message is identical for single and aggregated traps (trapChains). The single
trap variable binding contains one trap data element only, while the aggregated trapChains can contain
from 1 to trapMaxAggregationSize number of elements. Each trap data element has the structure of the
trapData object (see Annex A.9.3.2), and consists of the event ID that caused the trap to be generated;
the timestamp seconds and milliseconds at which the trap event occurred; and the trap data value. The
trap PDU header contains a timeticks field with one-second resolution that indicates the time at which the
PDU was sent; this field should not be confused with the trap event time and time-msec fields, which
indicate the time at which a trap event occurred. An example structure follows.

0x30 len SNMPv1 Message
0x02 0x01 0x00 version 1
0x04 len name community
0xA4 len trap PDU
0x06 0x0a 1.3.6.1.4.1.1206.4.2.1 OID: nema/transportation/devices/asc
0x40 0x04 ipaddr agent IP address
0x02 0x01 0x06 generic trap – specific
0x02 0x01 0x01 specific trap (trapEvent)
0x43 len timeticks time-stamp (sysUpTime)
0x30 len sequence of sequences
0x30 len v1-variable binding sequence
0x04 len octet string
trapMgmtSeqNum octet
trapMgmtManagerIndex octet
eventID, time, time-msec, value, oer encoded trap data (id,time,time-
msec, value)
eventID, time, time-msec, value,
eventID, time, time-msec, value,
…

Note: Inclusion of the trapMgmtManagerIndex in the main trap PDU means that the management
station can immediately acknowledge the trap channel before processing the contents of the trap
PDU.

NTCIP 1103 v03.52
Page 56

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

Note: The time-stamp (sysUpTime) value reflects the time at which the PDU was sent. If a re-try
is required, the time stamp in the retransmitted PDU reflects the time of retransmission, not the
time at which the original PDU was sent.

6.4.1 Event Data Structure

-- This is the sequence used to encode an event-log entry within
-- a trap payload.
EventDataStructure ::=
 SEQUENCE {
 eventConfigID INTEGER (1..65535),
 eventTime COUNTER,
 eventLogTimeMilliseconds INTEGER (0..999),
 eventData Opaque
 }

Trap Data Structure
-- The trapData object, which makes up the payload of a trap PDU,
-- contains the OER encoding of the TrapDataStructure defined here.
TrapDataStructure ::=
 SEQUENCE {
 trapMgmtSeqNum INTEGER (1..255),
 trapMgmtManagerIndex INTEGER (1..255),
 IMPLICIT SEQUENCE OF EventDataStructure
 }

Note: At the time of publication, NTCIP 1202 v02 contains an alternative definition of block
objects and their implementation that is intended to serve a different need. The NTCIP 1202 v02
block object definitions are fixed lists of NTCIP-1202-specific objects, and fulfill an application-
level need to efficiently transfer configuration data to and from intersection controllers. In contrast,
the watch objects and report objects defined in this standard are intended to allow management
stations to flexibly define lists of objects for the purposes of generating trap events. These
different senses of the phrase “block object” must not be confused.

NTCIP 1103 v03.52
Page 57

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

Section 7
High-Resolution Data Recording [Informative]

7.1 Overview
The high-resolution data recording facility (sometimes referred to simply as the recording mechanism)
provides a programmable method of collecting high-resolution records of the history of values of selected
data objects. These records are collected and retained under user-specified conditions. While this facility
may appear to be very similar to the event log, it provides a distinct function. The event log is intended to
capture device state on a routine basis, in response to regular but relatively low-volume events, and retain
that data for arbitrarily long periods of time. In contrast, the recording-mechanism facility is intended to
capture high-resolution traces of device state comprising hundreds or thousands of samples gathered
over a short period of time, in response to infrequent and unusual events, and to retain that data only until
the memory it occupies is required for a new recording. It is the management station’s responsibility to
ensure that data gathered by this facility is retrieved from the device in a timely manner.

When a recording is active, the device constantly samples the value of the data object to be recorded into
a circular buffer, at a configurable sampling interval. When an event occurs that triggers the recording, a
user-specified fraction of the samples gathered prior to the trigger event are retained, and further samples
are gathered until the recording is complete. Thus, the recording mechanism allows the management
station to gather data sampled before, during, and after an event of interest. Multiple recordings may be
active simultaneously; recordings may be classified in much the same way event log entries are; and the
memory available for recordings may be allocated flexibly to different classes under user control.

The high-resolution data recording mechanism is managed by the following MIB tables, as well as a
number of global objects that specify device-specific limits on the recording mechanism:

a) recClassTable – specifies the characteristics of the classes into which recordings may be
classified. This includes properties such as the maximum number of recordings of each class that
are allowed to exist.

b) recConfigTable – specifies the conditions under which specific recordings are triggered, and how
the data for each recording is gathered.

c) recRecordingTable – contains a row for each active recording, describing the state of the
recording and indicating where the recorded data may be found in the recEntryTable.

d) recEntryTable – contains the data gathered for all active recordings that have been triggered, and
have not yet been overwritten.

7.2 Recording Classes
The device shall define the maximum number of Recording Classes it is capable of handling. For each
recording class, ranging from 1 to maxRecClasses, the user shall specify the maximum number of
recordings they want and a description of the class. For the recording mechanism to function effectively,
the recClassLimit object for each class shall be at least three (3) as once a class has reached its
recordings capacity a new trigger causes the oldest recording to be deleted to have room to collect the
new recording. The Recording Class shall maintain counters for its number of recordings since power up
and the current number of its recordings in the Recording Table. These counters can be used by a
management station to determine when a new recording is available (complete) for a class and also
enables it to determine if recordings have been lost (i.e. over-written due to class recording limit). A
management station clears recordings of a class by setting the “clear time”. Any completed recording that
has a trigger time less than or equal to this value shall be removed from the recording table; however,
incomplete recordings shall not be removed from the recording table.

NTCIP 1103 v03.52
Page 58

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

7.3 Recording Configurations
The device shall define the maximum number of Recording Configurations it is capable of handling. For
each recording configuration, ranging from 1 to maxRecConfigs, the user shall specify the Recording
Class that the configuration belongs to, the trigger conditions, trigger point, OID to record, recording
action, and configuration status. The Recording Configurations are similar to the Event Log
Configurations with the difference being the addition of the trigger point, recConfigTriggerPoint and
sampling specifications. Once a recording is properly configured, it begins collecting records once
enabled. The recording of OIDs continues in a circular buffer until the trigger is activated. Once triggered,
recording of OIDs continues until the trigger point is at the user specified location in the recording.
Sampling parameters that the user specifies include the number of entries in the recording and either the
sampling period or ‘on-change’ object OID (i.e., a new sample is taken every time the value of the object
specified by the recConfigSampleOID object changes value). The maximum value allowed for
recSamplePeriodResolution shall be 50 milliseconds. A configuration cannot change if recordings exist
(the recordings require deletion first); however, clearing a configuration clears all of its recordings).

7.4 Recording Table
The Recording Table contains the details of each Recording in the Recording Entry Table,
recEntriesTable, including its class, the ID of the configuration that created it, its trigger time, the trigger
entry record number, status, and number of entries currently in the recording. The table index is
recRecordingNumber. Table 8 indicates the value of the recordingStatus object, which reflects the state
of the recording located in its row.

Table 8 recordingStatus Value Details

Value Description
available This row is available for a new recording to be initiated for this recording class. When a

recording is cleared, the value is set to available.
pre-event The recording defined by recConfigID is collecting pre-event record entries. Note that if

the trigger point is set to zero (0) percent or the trigger condition is already satisfied
when the recConfigID is configured, then the value transitions straight from available to
triggered.

triggered The recording defined by recConfigID has triggered and is now collecting post event
records. If the trigger point was set to 100 percent, then the value transitions straight
from preevent to complete. If a recording was triggered and the device experienced a
power failure, then upon power restoration it shall change the value to complete.
Triggered recordings shall survive a power outage.

complete the recording defined by recConfigID is now complete (i.e., collected all of its post
events) and ready for retrieval. Completed recordings shall survive a power outage.

Upon power restoration, any triggered but incomplete recording shall be marked complete. Once a
recording has been triggered, another recording for the same configuration shall be initiated and start
collecting pre-events. The number of “active” (i.e., triggered but not complete) recordings for a
configuration is limited by the respective recClassLimit object. Note that multiple active recordings are
allowed for the same recording configuration.

7.5 Recording Entry Table
The Recording Entry Table, recEntriesTable, contains an entry for each recorded object doubly-indexed
by recRecordingNumber and recEntryNumber (which is sequential ranging from 1..recConfigNumEntries).
If a recording is not triggered (but collecting pre-events), then upon power restoration the mechanism
shall clear all pre-events. If the Recording Entry Table is full when a new recording entry becomes
available, the device shall delete the oldest recording of any class from the Recording Table, and all of
that recording’s recording entries from the Recording Entry Table, and then save the latest recording
entry.

NTCIP 1103 v03.52
Page 59

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

7.6 Clearing the Recording Mechanism
Clearing the recording mechanism is hierarchical in nature and this provides an efficient method for
clearing lower levels. For example, clearing a recording clears it from the Recording Table and all of its
entries are automatically removed from the Recording Entry Table. Similarly, if one clears a Recording
Configuration, then all of its Recordings are cleared from the Recording Table which in turn removes all of
the associated entries from the Recording Entry Table. Clearing a Recording Class also results in its
Recording Configurations being cleared, and so on. Performing a global clear of all Recording Classes
completely clears the Recording Mechanism. If a configuration is deleted while a recording is triggered
but incomplete, then the recording should be deleted.

To further facilitate a management station’s ability to quickly clear the recording mechanism, separate
objects for clearing each of Recording Configurations (recClearConfigs), Recording Classes
(recClearClass), and Recordings (recClearRecordings) are provided. These objects are structured such
that if one specifies a value in the range 1..254 (or 1..65534, if appropriate) then that configuration, class,
or recording is cleared. However, if one sets the object to 255 (or 65535, if appropriate), then all
configurations, classes, or recordings are cleared.

NTCIP 1103 v03.52
Page 60

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

Section 8
Logical Names

A number of NTCIP Application and Transport Profiles are based or modeled on Internet Protocols that
use a 32-bit integer, called an IP Address, to identify the source and destination of messages. They
typically appear in a dotted notation such as “206.239.7.229”. Although this form provides a compact and
efficient format when used electronically, people prefer to use pronounceable, easily remembered names
such as “ftp.ntcip.org”. To convert the name form to a number form, special processes are set up to
provide the conversion. In the Internet, the names are referred to as domain names and the process that
provides the conversion is a domain name service. If the domain name “ftp.ntcip.org” is sent to an
appropriate service, it returns the IP Address “206.239.7.229”. This is the electronic address of the
computer that hosts the NTCIP Webpage. The name and number form have been registered with the
Internet Assigned Number Authority (IANA) and are globally unique. No other computer on the internet
can have the same name or address.

In NTCIP center-to-center applications, there is a desire to provide a more human readable name form for
IP Address and other functions. Because NTCIP does not require the setup of specialized computers to
provide conversion and to avoid using the Internet term “domain” name, NTCIP refers to a readable name
as a “logical name”. When an implementation uses or permits identification using logical names, the
Logical Name Translation Table defined in Annex A.6.2 can be used. This is a static table that, once filled
out, can be used to convert one form to the other.

NTCIP 1103 v03.52
Page 61

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

Section 9
Security

TMP provides a basic level of security. However, the primary purpose of TMP security design is to
prevent authorized users of the system from accessing data for which they are unauthorized.

Security against unauthorized users should be provided by lower layer services. For example, within a
dedicated multi-drop system, a high degree of security is provided by the fact that the physical layer itself
(i.e., the wires) is physically secure from typical hackers. Likewise, in dial-up networks, NTCIP standards
recommend the use of the Challenge-Handshake Authentication Protocol (CHAP) to authenticate the
remote entity. If additional levels of security are desired, off-the-shelf solutions, such as the Secure
Sockets Layer, are fully compatible with NTCIP protocols.

The security mechanism provided by TMP is dependent upon which of the three component protocols are
in use.

9.1 SNMP and SFMP Security
SNMP and SFMP use a common security scheme based on a simple authentication process. All SNMP
data packets and all SFMP request data packets include a community name field. The community name
field is an unencrypted octet string that associates the request with a user group. An agent can be
configured to provide different user groups with varying levels of data access through the use of MIB
views. The fact that the community name field is sent as an unencrypted octet string is a major security
issue that can only be addressed by lower layer protocols.

A MIB view is a well-defined term from the SNMP community, and detailed information about MIB views is
available in a variety of texts. In general, it allows objects that are defined as read-write to be viewed as if
they were read-only or not-accessible when accessed via certain community names.

The mechanism to configure the visibility of data for each community name is provided by the security
node of the TMP MIB as defined in Annex A. This node defines an object to hold the administrator
community name. The administrator community name shall provide access to all objects defined in the
device’s MIB.

The security node also defines a security table that consists of columns for an index, a community name,
and an access mask. Each bit of the access mask is a Boolean value that indicates whether a group of
objects are read-write or read-only for a given community name. The assignment of objects to bits is
manufacturer specific, except for the fact that the following objects shall not be assigned to any bit and
shall be viewed as not-accessible for all community names within the table (this restriction does not apply
to the administrator community name):

a) All objects under the security node (Annex A)
{ nema transportation devices global security }

b) All objects under the chap node (NTCIP 2301 v02 Annex B)
{ nema transportation protocols layers chap }

c) Any objects so identified by various device standards

9.2 STMP Security
The STMP provides a basic level of security based on the fact that the data packet is not self-defining.
Instead, the content of each data packet requires each protocol entity to have prior knowledge of the

NTCIP 1103 v03.52
Page 62

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

configuration of each dynamic object. This configuration information is only accessible via SNMP or
SFMP.

The following objects shall not be assigned to any dynObjVariable:

a) All objects under the “security” node (Annex A)
{ nema transportation devices global security }

b) All objects under the “dynObjMgmt” node (Annex A)
{nema transportation protocols dynObjMgmt}

c) All objects under the “chap” node (NTCIP 2301 v02 Annex B)
{ nema transportation protocols layers chap }

d) Any objects so identified by various device standards

The likely security threats for STMP at the application layer are due to the fact that SNMP or SFMP needs
to be used to configure STMP dynamic objects. These unencrypted data exchanges might be captured, if
the data exchanges take place over publicly accessible networks. As indicated with SNMP, the lower
layer protocols need to be employed to avoid this security threat.

NTCIP 1103 v03.52
Page 63

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

Section 10
Conformance Statement

Most NTCIP conformance requirements for NTCIP 1103 v03 are defined in NTCIP 2301 v02.

10.1 Time Source Restriction
In addition to the NTCIP 1103 v03 conformance requirements contained in NTCIP 2301 v02, some
NTCIP 1103 v03 implementations, for example, those employing eventLogTimeMilliseconds, require
implementing devices to use a time source with millisecond-level resolution, such as GPS or TIA
(International Atomic Time).

NTCIP 1103 v03.52
Page 64

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

Annex A
Transportation Management Protocols (TMP)

Management Information Base (MIB)
[Normative]

Annex A defines those objects necessary to configure, manage, and monitor various aspects of the
Transportation Management Protocols. The objects are defined using the OBJECT-TYPE macro defined
in RFC 1212. The text provided in Annex A contains several standard MIBs addressing these various
aspects of configuration, monitoring, and managing functions. Each of the MIBs has their own header to
allow use of singular or multiple MIBs within an implementation. The names of each MIB are shown
following the MIB Header. All of the MIBs defined in Annex A together replace the TMIB II.

To convert these object definitions into data concepts, e.g., for the exchange in center-to-center
communications, the rules defined in NTCIP 8005 v01 shall apply.

Annex A presents the objects in lexicographical order of their OBJECT IDENTIFIERS, which correspond
to their physical location within the global naming tree. All of the objects defined in NTCIP 1103 v03
reside under the "nema" node of the global naming tree. To aid in object management, the "nema" node
has been subdivided into logical categories, each defined by a node under the "nema" node. The
individual objects are then located under the appropriate node.

Nodes should not be confused with conformance requirements, which are defined in profiles. The NTCIP
profile for NTCIP 1103 v03 is NTCIP 2301 v02. Conformance requirements are based on logical
groupings of objects that provide specific features that may be desired in a device. While the
conformance requirements frequently correspond to the nodal structure, a conformance group may
contain objects that are not lexicographically ordered.

Note: NTCIP 1103 v03 uses NTCIP 8004 v02 conventions. NTCIP 1103 v03 specifies all (non-
deprecated/non-obsolete) objects to be optional according to the conventions stated in NTCIP
8004 v02; it is the responsibility of any document referring to NTCIP 1103 v03 to specify exactly
which objects shall be supported under what conditions through a Protocol Requirements List
(PRL).

Text preceded by a double hyphen in the MIB definitions represents normative text for NTCIP 1103 v02.

A.1 TMP SNMP MIB Header
-- Filename: 1103v0352-SNMP.MIB
-- Description: This MIB defines various objects related to managing and
-- monitoring the SNMP Protocol. Specifically, these
-- include objects related to:
-- (a) configuration of objects
-- This MIB replaces portions of TMIB-II.
--
-- MIB Revision History:
-- 08/01/96 Original standard approved
-- 01/01/98 Preliminary Release of TS 3.2 TMIB MIB formatted for 80
-- columns and no TABs
-- 01/07/98 Replaced some missed TABs with spaces
-- 07/08/98 Added Copyright Notice
-- 10/07/98 Amendment 1

NTCIP 1103 v03.52
Page 65

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

-- 03/09/00 Removed all the special edits to that were done to use the
-- SMIC Compiler
-- Defined DisplayString to eliminate reference to RFC 1212
-- END is still left "Dynamic Object Data" group
-- Changed filename and updated copyright years
-- Updated the MIB to Amendment 1
-- 08/09/00 Modified header format and wording of copyright and MIB
-- 11/16/01 Added objects for sfmp and stmp statistics
-- Moved security node into this MIB from NTCIP 1201
-- Added objects to support logical names
-- Renamed the module to NTCIP1103-A-2002 from TMIB-II
-- Renamed the text name to Transportation Management
-- Protocols MIB from Transportation MIB
-- Changed STATUS of all objects to optional to reflect new
-- conformance rules being defined in NTCIP 8004
-- 06/08/04 Moved report node into this MIB from NTCIP 1201
-- 09/27/04 Changed name of file.
-- 10/11/04 Per KLV e-mails 10/08/04 updated version and
-- Changed Index on logicalNameTranslation-index
-- from (0..255) to (1..255)
-- Changed all STATUS optional to mandatory
-- 06/13/05 Updated filename.
-- 08/09/05 Added object definitions for Trap Management, Watch Block
Objects
-- Updated filename; re-instantiated the OIDs for the
-- 13 dynamic objects.
-- 04/19/06 Broke the various logical groupings of objects into separate
-- MIBs to allow for separate compiling for various deployment
-- needs.
-- 10/09/07 Changed the Description fields of the objects to conform to the
-- new version of NTCIP 8004 v02.
-- 12/14/07 Changed the name of this MIB only to reflect the version
-- number.
-- 11/07/16 Changed the name of this MIB only to reflect the version
-- number.
-- 12/03/16 Modified to correct issues found in compiling MIBs with SMICng
-- v2.2.07
--
-- DISTRIBUTION NOTICE
--Copyright 2016 by the American Association of State Highway and
--Transportation Officials (AASHTO), the Institute of Transportation Engineers
--(ITE), and the National Electrical Manufacturers Association (NEMA). All
--intellectual property rights, including, but not limited to, the rights of
--reproduction in whole or in part in any form, translation into other
--languages and display are reserved by the copyright owners under the laws of
--the United States of America, the Universal Copyright Convention, the Berne
--Convention, and the International and Pan American Copyright Conventions.
--Except for the MIB, Do not copy without written permission of either AASHTO,
--ITE, or NEMA.
--
-- Joint NEMA, AASHTO, and ITE
-- NTCIP Management Information Base
-- DISTRIBUTION NOTICE
--
--To the extent and in the limited event these materials are distributed by
--AASHTO/ITE/NEMA in the form of a Management Information Base ("MIB"),
--AASHTO/ITE/NEMA extends the following permissions:

NTCIP 1103 v03.52
Page 66

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

--
--(i) you may make and/or distribute unlimited copies (including derivative
--works) of the MIB, including copies for commercial distribution, provided
--that (a) each copy you make and/or distribute contains this Notice and (b)
--each derivative work of the MIB uses the same module name followed by "-",
--followed by your Internet Assigned Number Authority (IANA)-assigned
--enterprise number;
--(ii) use of the MIB is restricted in that the syntax field may be modified
--only to reflect a more restrictive sub-range or enumerated values;
--(iii) the description field may be modified but only to the extent that:
--(a) only those bit values or enumerated values that are supported are
--listed; and (b) the more restrictive subrange is expressed.
--
--These materials are delivered "AS IS" without any warranties as to their
use
--or performance.
--
--AASHTO/ITE/NEMA AND THEIR SUPPLIERS DO NOT WARRANT THE PERFORMANCE OR
--RESULTS YOU MAY OBTAIN BY USING THESE MATERIALS. AASHTO/ITE/NEMA AND THEIR
--SUPPLIERS MAKE NO WARRANTIES, EXPRESS OR IMPLIED, AS TO NONINFRINGEMENT OF
--THIRD PARTY RIGHTS, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE.
--IN NO EVENT WILL AASHTO, ITE OR NEMA OR THEIR SUPPLIERS BE LIABLE TO YOU OR
--ANY THIRD PARTY FOR ANY CLAIM OR FOR ANY CONSEQUENTIAL, INCIDENTAL OR
--SPECIAL DAMAGES, INCLUDING ANY LOST PROFITS OR LOST SAVINGS, ARISING FROM
--YOUR REPRODUCTION OR USE OF THESE MATERIALS, EVEN IF AN AASHTO, ITE, OR
NEMA
--REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Some
--states or jurisdictions do not allow the exclusion or limitation of
--incidental, consequential or special damages, or the exclusion of implied
--warranties, so the above limitations may not apply to you.
--
--Use of these materials does not constitute an endorsement or affiliation by
--or between AASHTO, ITE, or NEMA and you, your company, or your products and
--services.
--
--NTCIP is a trademark of AASHTO/ITE/NEMA.
--
**

NTCIP1103v0352-SNMP DEFINITIONS ::= BEGIN

IMPORTS
 OBJECT-TYPE
 FROM RFC-1212
application
 FROM NTCIP8004-2008;
-- EXPORTS EVERYTHING

A.1.1 Objects for SNMP
snmpConfig OBJECT IDENTIFIER ::= {application 1}
-- <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.1

A.1.2 Maximum SNMP Packet Size Parameter
snmpMaxPacketSize OBJECT-TYPE

NTCIP 1103 v03.52
Page 67

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

 SYNTAX INTEGER (484..65535)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> Indicates the maximum packet size,
 in octets, that the SNMP agent supports for
 reception or transmission.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.1.1
 "
::= {snmpConfig 1}

END -- NTCIP1103v0352-SNMP

A.2 TMP SFMP MIB Header
-- Filename: 1103v0352-SFMP.MIB
-- Description: This MIB defines various objects related to managing and
-- monitoring the Simple Fixed Management Protocol (SFMP).
-- Specifically, these include objects related to:
-- (a) communication statistics
-- This MIB replaces portions of TMIB-II.
--
-- MIB Revision History:
-- 08/01/96 Original standard approved
-- 01/01/98 Preliminary Release of TS 3.2 TMIB MIB formatted for 80
-- columns and no TABs
-- 01/07/98 Replaced some missed TABs with spaces
-- 07/08/98 Added Copyright Notice
-- 10/07/98 Amendment 1
-- 03/09/00 Removed all the special edits to that were done to use the
-- SMIC Compiler
-- Defined DisplayString to eliminate reference to RFC 1212
-- END is still left "Dynamic Object Data" group
-- Changed filename and updated copyright years
-- Updated the MIB to Amendment 1
-- 08/09/00 Modified header format and wording of copyright and MIB
-- 11/16/01 Added objects for sfmp and stmp statistics
-- Moved security node into this MIB from NTCIP 1201
-- Added objects to support logical names
-- Renamed the module to NTCIP1103-A-2002 from TMIB-II
-- Renamed the text name to Transportation Management
-- Protocols MIB from Transportation MIB
-- Changed STATUS of all objects to optional to reflect new
-- conformance rules being defined in NTCIP 8004
-- 06/08/04 Moved report node into this MIB from NTCIP 1201
-- 09/27/04 Changed name of file.
-- 10/11/04 Per KLV e-mails 10/08/04 updated version and
-- Changed Index on logicalNameTranslation-index
-- from (0..255) to (1..255)
-- Changed all STATUS optional to mandatory
-- 06/13/05 Updated filename.
-- 08/09/05 Added object definitions for Trap Management, Watch Block
Objects
-- Updated filename; re-instantiated the OIDs for the
-- 13 dynamic objects.
-- 04/19/06 Broke the various logical groupings of objects into separate
-- MIBs to allow for separate compiling for various deployment

NTCIP 1103 v03.52
Page 68

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

-- needs.
-- 10/09/07 Changed the Description fields of the objects to conform to the
-- new version of NTCIP 8004 v2.
-- 11/07/16 Changed the name of this MIB only to reflect the version
number.
-- 12/03/16 Modified to correct issues found in compiling MIBs with SMICng
-- v2.2.07
--
-- DISTRIBUTION NOTICE
--Copyright 2016 by the American Association of State Highway and
--Transportation Officials (AASHTO), the Institute of Transportation
Engineers
--(ITE), and the National Electrical Manufacturers Association (NEMA). All
--intellectual property rights, including, but not limited to, the rights of
--reproduction in whole or in part in any form, translation into other
--languages and display are reserved by the copyright owners under the laws
of
--the United States of America, the Universal Copyright Convention, the Berne
--Convention, and the International and Pan American Copyright Conventions.
--Except for the MIB, Do not copy without written permission of either
AASHTO,
--ITE, or NEMA.
--
-- Joint NEMA, AASHTO, and ITE
-- NTCIP Management Information Base
-- DISTRIBUTION NOTICE
--
--To the extent and in the limited event these materials are distributed by
--AASHTO/ITE/NEMA in the form of a Management Information Base ("MIB"),
--AASHTO/ITE/NEMA extends the following permissions:
--
--(i) you may make and/or distribute unlimited copies (including derivative
--works) of the MIB, including copies for commercial distribution, provided
--that (a) each copy you make and/or distribute contains this Notice and (b)
--each derivative work of the MIB uses the same module name followed by "-",
--followed by your Internet Assigned Number Authority (IANA)-assigned
--enterprise number;
--(ii) use of the MIB is restricted in that the syntax field may be modified
--only to reflect a more restrictive sub-range or enumerated values;
--(iii) the description field may be modified but only to the extent that:
--(a) only those bit values or enumerated values that are supported are
--listed; and (b) the more restrictive subrange is expressed.
--
--These materials are delivered "AS IS" without any warranties as to their
use
--or performance.
--
--AASHTO/ITE/NEMA AND THEIR SUPPLIERS DO NOT WARRANT THE PERFORMANCE OR
--RESULTS YOU MAY OBTAIN BY USING THESE MATERIALS. AASHTO/ITE/NEMA AND THEIR
--SUPPLIERS MAKE NO WARRANTIES, EXPRESS OR IMPLIED, AS TO NONINFRINGEMENT OF
--THIRD PARTY RIGHTS, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE.
--IN NO EVENT WILL AASHTO, ITE OR NEMA OR THEIR SUPPLIERS BE LIABLE TO YOU OR
--ANY THIRD PARTY FOR ANY CLAIM OR FOR ANY CONSEQUENTIAL, INCIDENTAL OR
--SPECIAL DAMAGES, INCLUDING ANY LOST PROFITS OR LOST SAVINGS, ARISING FROM
--YOUR REPRODUCTION OR USE OF THESE MATERIALS, EVEN IF AN AASHTO, ITE, OR
NEMA
--REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Some

NTCIP 1103 v03.52
Page 69

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

--states or jurisdictions do not allow the exclusion or limitation of
--incidental, consequential or special damages, or the exclusion of implied
--warranties, so the above limitations may not apply to you.
--
--Use of these materials does not constitute an endorsement or affiliation by
--or between AASHTO, ITE, or NEMA and you, your company, or your products and
--services.
--
--NTCIP is a trademark of AASHTO/ITE/NEMA.
--

NTCIP1103v0352-SFMP DEFINITIONS ::= BEGIN

IMPORTS
 Counter
 FROM RFC1155-SMI
 OBJECT-TYPE
 FROM RFC-1212
 application
 FROM NTCIP8004-2008;
-- EXPORTS EVERYTHING

sfmp OBJECT IDENTIFIER ::= {application 2}
-- <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.2

sfmpStatistics OBJECT IDENTIFIER ::= { sfmp 1 }
-- <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.2.1

A.2.1 Number of Incoming SFMP Packets
sfmpInPkts OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of Messages delivered to
 the SFMP entity for processing.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.2.1.1
 "
::= { sfmpStatistics 1 }

A.2.2 Number of Outgoing SFMP Packets
sfmpOutPkts OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of SFMP PDU's which were
 generated by the SFMP protocol entity.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.2.1.2
 "
::= { sfmpStatistics 2 }

NTCIP 1103 v03.52
Page 70

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

A.2.3 Number of Incoming SFMP Packets with Bad Version Numbers
sfmpInBadVersions OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of SFMP Messages which
 were delivered to the SFMP protocol entity and were for
 an unsupported SFMP version.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.2.1.3
 "
::= { sfmpStatistics 3 }

A.2.4 Number of Incoming SFMP Packets with Bad Community Names
sfmpInBadCommunityNames OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of SFMP Messages delivered
 to the SFMP protocol entity which used a SFMP community
 name not known to said entity.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.2.1.4
 "
::= { sfmpStatistics 4 }

A.2.5 Number of Incoming SFMP Packets with Bad Use of a Community Name
sfmpInBadCommunityUses OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of SFMP Messages delivered
 to the SFMP protocol entity which represented an SFMP
 operation which was not allowed by the SFMP community
 named in the Message.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.2.1.5
 "
::= { sfmpStatistics 5 }

A.2.6 Number of Incoming SFMP Packets with Parsing Errors
sfmpInParseErrs OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of OER errors encountered
 by the SFMP protocol entity when decoding received SFMP
 Messages.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.2.1.6
 "
::= { sfmpStatistics 6 }

NTCIP 1103 v03.52
Page 71

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

A.2.7 Reserved
-- node 7 is reserved for bad types to parallel SNMP, but it does not
-- apply to SFMP

A.2.8 Number of Incoming SFMP Packets Indicating a Too Big Error
sfmpInTooBigs OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of SFMP PDUs which were
 delivered to the SFMP protocol entity with a Message
 Type of Error and Error Number of tooBig.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.2.1.8
 "
::= { sfmpStatistics 8 }

A.2.9 Number of Incoming SFMP Packets Indicating a No Such Name Error
sfmpInNoSuchNames OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of SFMP PDUs which were
 delivered to the SFMP protocol entity with a Message
 Type of Error and Error Number of noSuchName.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.2.1.9
 "
::= { sfmpStatistics 9 }

A.2.10 Number of Incoming SFMP Packets Indicating a Bad Value Error
sfmpInBadValues OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of SFMP PDUs which were
 delivered to the SFMP protocol entity with a Message
 Type of Error and Error Number of badValue.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.2.1.10
 "
::= { sfmpStatistics 10 }

A.2.11 Number of Incoming SFMP Packets Indicating a Read-Only Error
sfmpInReadOnlys OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of SFMP PDUs which were
 delivered to the SFMP protocol entity with a Message Type
 of Error and Error Number of readOnly.

NTCIP 1103 v03.52
Page 72

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.2.1.11
 "
::= { sfmpStatistics 11 }

A.2.12 Number of Incoming SFMP Packets Indicating a General Error
sfmpInGenErrs OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of SFMP PDUs which were
 delivered to the SFMP protocol entity with a Message Type
 of Error and Error Number of genError.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.2.1.12
 "
::= { sfmpStatistics 12 }

A.2.13 Reserved
-- node 13 is reserved for total request vars to
-- parallel SNMP, but it does not apply to SFMP

A.2.14 Reserved
-- node 14 is reserved for total set vars to parallel
-- SNMP, but it does not apply to SFMP

A.2.15 Number of Incoming SFMP Get Requests
sfmpInGetRequests OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of SFMP Get-Request PDUs
 which have been accepted and processed by the SFMP
 protocol entity.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.2.1.15
 "
::= { sfmpStatistics 15 }

A.2.16 Reserved
-- node 16 is reserved for in get nexts to parallel
-- SNMP, but it does not apply to SFMP

A.2.17 Number of Incoming SFMP Set Requests
sfmpInSetRequests OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of SFMP Set-Request PDUs
 which have been accepted and processed by the SFMP protocol

NTCIP 1103 v03.52
Page 73

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

 entity.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.2.1.17
 "
::= { sfmpStatistics 17 }

A.2.18 Number of Incoming SFMP Get Responses
sfmpInGetResponses OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of SFMP Get-Response PDUs
 which have been accepted and processed by the SFMP protocol
 entity.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.2.1.18
 "
::= { sfmpStatistics 18 }

A.2.19 Reserved
-- node 19 is reserved for traps to parallel SNMP, but it
-- does not apply to SFMP at present

A.2.20 Number of Outgoing SFMP Packets Indicating a Too Big Error
sfmpOutTooBigs OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of SFMP PDUs which were
 generated by the SFMP protocol entity with a Message Type
 of Error and Error Number of tooBig.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.2.1.20
 "
::= { sfmpStatistics 20 }

A.2.21 Number of Outgoing SFMP Packets Indicating a No Such Name Error
sfmpOutNoSuchNames OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of SFMP PDUs which were
 generated by the SFMP protocol entity with a Message Type
 of Error and Error Number of noSuchname.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.2.1.21
 "
::= { sfmpStatistics 21 }

A.2.22 Number of Outgoing SFMP Packets Indicating a Bad Value Error
sfmpOutBadValues OBJECT-TYPE
 SYNTAX Counter

NTCIP 1103 v03.52
Page 74

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of SFMP PDUs which were
 generated by the SFMP protocol entity with a Message Type
 of Error and Error Number of badValue.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.2.1.22
 "
::= { sfmpStatistics 22 }

A.2.23 Number of Outgoing SFMP Packets Indicating a Read-Only Error
sfmpOutReadOnly OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of SFMP PDUs which were
 generated by the SFMP protocol entity with a Message Type
 of Error and Error Number of readOnly.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.2.1.23
 "
::= { sfmpStatistics 23 }

A.2.24 Number of Outgoing SFMP Packets Indicating a General Error
sfmpOutGenError OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of SFMP PDUs which were
 generated by the SFMP protocol entity with a Message Type
 of Error and Error Number of genErr.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.2.1.24
 "
::= { sfmpStatistics 24 }

A.2.25 Number of Outgoing SFMP Get Requests
sfmpOutGetRequests OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of SFMP PDU's with a Message
 Type of Get-Request, which have been generated by the SFMP
 protocol entity.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.2.1.25
 "
::= { sfmpStatistics 25 }

A.2.26 Reserved
-- node 26 is reserved for out get nexts to parallel SNMP,
-- but it does not apply to SFMP

NTCIP 1103 v03.52
Page 75

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

A.2.27 Number of Outgoing SFMP Set Requests
sfmpOutSetRequests OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of SFMP PDU's with a Message
 Type of Set-Request, which have been generated by the SFMP
 protocol entity.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.2.1.27
 "
::= { sfmpStatistics 27 }

A.2.28 Number of Outgoing SFMP Get Responses
sfmpOutGetResponses OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of SFMP PDU's with a Message
 Type of Get-Response, which have been generated by the SFMP
 protocol entity.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.2.1.28
 "
::= { sfmpStatistics 28 }

A.2.29 Number of Outgoing SFMP Trap Messages
sfmpOutTrapMessages OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of SFMP PDUs with a message
 type of Trap that have been generated by the SFMP protocol
 entity.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.2.1.29
 "
::= { sfmpStatistics 29 }

A.2.30 Reserved
-- node 30 is reserved for enable authentication traps to parallel
-- SNMP, but it does not apply to SFMP

A.2.31 Number of Incoming SFMP Set Requests – No Replies
sfmpInSetRequestsNoReply OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of SFMP Set-Request No Reply

NTCIP 1103 v03.52
Page 76

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

 PDUs which have been accepted and processed by the SFMP
 protocol entity.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.2.1.31
 "
::= { sfmpStatistics 31 }

A.2.32 Number of Incoming SFMP Set Responses
sfmpInSetResponses OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of SFMP Set-Response PDUs
 which have been accepted and processed by the SFMP protocol
 entity.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.2.1.32
 "
::= { sfmpStatistics 32 }

A.2.33 Number of Incoming SFMP Error Responses
sfmpInErrorResponses OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of SFMP Error-Response PDUs
 which have been accepted and processed by the SFMP protocol
 entity.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.2.1.33
 "
::= { sfmpStatistics 33 }

A.2.34 Number of Outgoing SFMP Set Requests – No Replies
sfmpOutSetRequestsNoReply OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of SFMP PDU's with a Message
 Type of Set-Request-No-Reply, which have been generated by
 the SFMP protocol entity.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.2.1.34
 "
::= { sfmpStatistics 34 }

A.2.35 Number of Outgoing SFMP Set Responses
sfmpOutSetResponses OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of SFMP PDU's with a Message

NTCIP 1103 v03.52
Page 77

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

 Type of Set-Response, which have been generated by the SFMP
 protocol entity.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.2.1.35
 "
::= { sfmpStatistics 35 }

A.2.36 Number of Outgoing SFMP Error Responses
sfmpOutErrorResponses OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of SFMP PDU's with a Message
 Type of Error-Response, which have been generated by the SFMP
 protocol entity.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.2.1.36
 "
::= { sfmpStatistics 36 }

END -- NTCIP1103v0352-SFMP

A.3 TMP STMP MIB Header
-- Filename: 1103v0352-STMP.MIB
-- Description: This MIB defines various objects related to managing and
-- monitoring the Simple Transportation Management Protocol (STMP).
-- Specifically, these include objects related to:
-- (a) configuration of dynamic objects,
-- (b) communication statistics,
-- (c) configuration of community names,
-- (d) managing event information that can be logged in the device, and
-- (e) the mapping of logical names to network addresses
-- This MIB replaces portions of TMIB-II.
--
-- MIB Revision History:
-- 08/01/96 Original standard approved
-- 01/01/98 Preliminary Release of TS 3.2 TMIB MIB formatted for 80
-- columns and no TABs
-- 01/07/98 Replaced some missed TABs with spaces
-- 07/08/98 Added Copyright Notice
-- 10/07/98 Amendment 1
-- 03/09/00 Removed all the special edits to that were done to use the
-- SMIC Compiler
-- Defined DisplayString to eliminate reference to RFC 1212
-- END is still left "Dynamic Object Data" group
-- Changed filename and updated copyright years
-- Updated the MIB to Amendment 1
-- 08/09/00 Modified header format and wording of copyright and MIB
-- 11/16/01 Added objects for sfmp and stmp statistics
-- Moved security node into this MIB from NTCIP 1201
-- Added objects to support logical names
-- Renamed the module to NTCIP1103-A-2002 from TMIB-II
-- Renamed the text name to Transportation Management
-- Protocols MIB from Transportation MIB
-- Changed STATUS of all objects to optional to reflect new

NTCIP 1103 v03.52
Page 78

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

-- conformance rules being defined in NTCIP 8004
-- 06/08/04 Moved report node into this MIB from NTCIP 1201
-- 09/27/04 Changed name of file.
-- 10/11/04 Per KLV e-mails 10/08/04 updated version and
-- Changed Index on logicalNameTranslation-index
-- from (0..255) to (1..255)
-- Changed all STATUS optional to mandatory
-- 06/13/05 Updated filename.
-- 08/09/05 Added object definitions for Trap Management, Watch Block
-- Objects
-- Updated filename; re-instantiated the OIDs for the
-- 13 dynamic objects.
-- 04/19/06 Broke the various logical groupings of objects into separate
-- MIBs to allow for separate compiling for various deployment
-- needs.
-- 10/09/07 Changed the Description fields of the objects to conform to the
-- new version of NTCIP 8004 v2.
-- 12/14/07 Changed the name of this MIB only to reflect the version
number.
-- 11/07/16 Changed the name of this MIB only to reflect the version
number.
-- 12/03/16 Modified to correct issues found in compiling MIBs with SMICng
-- v2.2.07

-- DISTRIBUTION NOTICE
--Copyright 2016 by the American Association of State Highway and
--Transportation Officials (AASHTO), the Institute of Transportation
Engineers
--(ITE), and the National Electrical Manufacturers Association (NEMA). All
--intellectual property rights, including, but not limited to, the rights of
--reproduction in whole or in part in any form, translation into other
--languages and display are reserved by the copyright owners under the laws
of
--the United States of America, the Universal Copyright Convention, the Berne
--Convention, and the International and Pan American Copyright Conventions.
--Except for the MIB, Do not copy without written permission of either
AASHTO,
--ITE, or NEMA.
--
-- Joint NEMA, AASHTO, and ITE
-- NTCIP Management Information Base
-- DISTRIBUTION NOTICE
--
--To the extent and in the limited event these materials are distributed by
--AASHTO/ITE/NEMA in the form of a Management Information Base ("MIB"),
--AASHTO/ITE/NEMA extends the following permissions:
--
--(i) you may make and/or distribute unlimited copies (including derivative
--works) of the MIB, including copies for commercial distribution, provided
--that (a) each copy you make and/or distribute contains this Notice and (b)
--each derivative work of the MIB uses the same module name followed by "-",
--followed by your Internet Assigned Number Authority (IANA)-assigned
--enterprise number;
--(ii) use of the MIB is restricted in that the syntax field may be modified
--only to reflect a more restrictive sub-range or enumerated values;
--(iii) the description field may be modified but only to the extent that:
--(a) only those bit values or enumerated values that are supported are

NTCIP 1103 v03.52
Page 79

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

--listed; and (b) the more restrictive subrange is expressed.
--
--These materials are delivered "AS IS" without any warranties as to their
use
--or performance.
--
--AASHTO/ITE/NEMA AND THEIR SUPPLIERS DO NOT WARRANT THE PERFORMANCE OR
--RESULTS YOU MAY OBTAIN BY USING THESE MATERIALS. AASHTO/ITE/NEMA AND THEIR
--SUPPLIERS MAKE NO WARRANTIES, EXPRESS OR IMPLIED, AS TO NONINFRINGEMENT OF
--THIRD PARTY RIGHTS, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE.
--IN NO EVENT WILL AASHTO, ITE OR NEMA OR THEIR SUPPLIERS BE LIABLE TO YOU OR
--ANY THIRD PARTY FOR ANY CLAIM OR FOR ANY CONSEQUENTIAL, INCIDENTAL OR
--SPECIAL DAMAGES, INCLUDING ANY LOST PROFITS OR LOST SAVINGS, ARISING FROM
--YOUR REPRODUCTION OR USE OF THESE MATERIALS, EVEN IF AN AASHTO, ITE, OR
NEMA
--REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Some
--states or jurisdictions do not allow the exclusion or limitation of
--incidental, consequential or special damages, or the exclusion of implied
--warranties, so the above limitations may not apply to you.
--
--Use of these materials does not constitute an endorsement or affiliation by
--or between AASHTO, ITE, or NEMA and you, your company, or your products and
--services.
--
--NTCIP is a trademark of AASHTO/ITE/NEMA.
--

NTCIP1103v0352-STMP DEFINITIONS ::= BEGIN

IMPORTS
 null
 FROM RFC1155-SMI
 OBJECT-TYPE
 FROM RFC-1212
 OwnerString, dynObjMgmt
 FROM NTCIP8004-2008;
-- EXPORTS EVERYTHING

A.3.1 Type Definitions
ConfigEntryStatus ::= INTEGER
 { valid (1),
 underCreation (2),
 invalid (3) }
-- See Clause 5.2.4.1 of NTCIP 1103 for the complete definition
-- of this Type.

A.3.2 Objects for STMP
dynObjData OBJECT IDENTIFIER ::= { dynObjMgmt 2 }
-- <Object Definition> 1.3.6.1.4.1.1206.4.1.3.2

A.3.3 Maximum Dynamic Object Table Entries
dynObjDefTableMaxEntries OBJECT-TYPE

NTCIP 1103 v03.52
Page 80

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

 SYNTAX INTEGER (1..255)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> This object specifies the maximum number of
 rows that may be implemented in the Dynamic Object
 Definition table.
 <Object Definition> 1.3.6.1.4.1.1206.4.1.3.4
 "
::= { dynObjMgmt 4 }

A.3.4 Dynamic Object Definition Table
dynObjDef OBJECT-TYPE
 SYNTAX SEQUENCE OF DynObjEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "<Definition> A list of objects to be included in dynamic
 objects
 <TableType> static
 <Object Definition> 1.3.6.1.4.1.1206.4.1.3.1
 "
::= { dynObjMgmt 1 }

dynObjEntry OBJECT-TYPE
 SYNTAX DynObjEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "<Definition> A list of OBJECT IDENTIFIERs that make up a
 dynamic object
 <Object Definition> 1.3.6.1.4.1.1206.4.1.3.1.1
 "
 INDEX { dynObjNumber, dynObjIndex }
::= { dynObjDef 1 }

DynObjEntry ::= SEQUENCE {
 dynObjNumber INTEGER (1..13),
 dynObjIndex INTEGER,
 dynObjVariable OBJECT IDENTIFIER }
 -- dynObjOwner & dynObjStatus were deprecated from the
 -- DynObjEntry structure. See Annex B.

A.3.4.1 Dynamic Object Number
dynObjNumber OBJECT-TYPE
 SYNTAX INTEGER (1..13)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The dynamic object number that this entry is
 to be associated with.
 <Object Definition> 1.3.6.1.4.1.1206.4.1.3.1.1.1
 "
::= { dynObjEntry 1 }

NTCIP 1103 v03.52
Page 81

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

A.3.4.2 Dynamic Object Index
dynObjIndex OBJECT-TYPE
 SYNTAX INTEGER (1..255)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> An index that uniquely identifies an entry in
 the dynamic object table. Each entry defines an object that
 is to be associated with a dynamic object number. The
 dynObjIndex determines the order in which objects are
 transmitted for the associated dynamic object. The lower
 dynObjIndex numbers are transmitted before larger numbers
 for entries within the same dynamic object.
 <Object Definition> 1.3.6.1.4.1.1206.4.1.3.1.1.2
 "
::= { dynObjEntry 2 }

A.3.4.3 Dynamic Object Variable
dynObjVariable OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition> The complete object identifier of the particular
 variable to be included in the specified dynamic object
 number. When defining dynamic objects, the maximum size
 of all the objects included in a dynamic object shall not exceed
 the maximum packet size of the communications network.

 When set to reference a columnar object, an agent may wish to
 only validate the prefix portion of the object identifier.
 The suffix or index portion of an object identifier need not
 be instantiated or exist at the time a dynObjVariable is
 defined.

 This object shall not reference any of the objects identified
 in NTCIP 1103 Clause 8.2.

 This object may not be modified unless the associated
 dynObjConfigStatus object is equal to underCreation.
 <Object Definition> 1.3.6.1.4.1.1206.4.1.3.1.1.3
 "
 DEFVAL {null}
::= { dynObjEntry 3 }

A.3.4.4 Reserved
-- { dynObjEntry 4 } is a deprecated node that was a columnar object
-- of the DynObjEntry sequence. See Annex B.

A.3.4.5 Reserved
-- { dynObjEntry 5 } is a deprecated node that was a columnar object
-- of the DynObjEntry sequence. See Annex B.

NTCIP 1103 v03.52
Page 82

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

A.3.5 Dynamic Object Data
-- { dynObjData 1 } is deprecated. See Annex B.

-- { dynObjData 2 } is deprecated. See Annex B.

-- { dynObjData 3 } is deprecated. See Annex B.

-- { dynObjData 4 } is deprecated. See Annex B.

-- { dynObjData 5 } is deprecated. See Annex B.

-- { dynObjData 6 } is deprecated. See Annex B.

-- { dynObjData 7 } is deprecated. See Annex B.

-- { dynObjData 8 } is deprecated. See Annex B.

-- { dynObjData 9 } is deprecated. See Annex B.

-- { dynObjData 10 } is deprecated. See Annex B.

-- { dynObjData 11 } is deprecated. See Annex B.

-- { dynObjData 12 } is deprecated. See Annex B.

-- { dynObjData 13 } is deprecated. See Annex B.

A.3.6 Dynamic Object Configuration
dynObjConfigTable OBJECT-TYPE
 SYNTAX SEQUENCE OF DynObjConfigEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "<Definition> A table consisting of an owner and status for
 each of the 13 dynamic object definitions.
 <TableType> static
 <Object Definition> 1.3.6.1.4.1.1206.4.1.3.3
 "
 ::= { dynObjMgmt 3}

dynObjConfigEntry OBJECT-TYPE
 SYNTAX DynObjConfigEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "<Definition> A table consisting of an owner and status for
 each of the 13 dynamic object definitions.
 <Object Definition> 1.3.6.1.4.1.1206.4.1.3.3.1
 "
 INDEX {dynObjNumber}
::= {dynObjConfigTable 1}

DynObjConfigEntry ::= SEQUENCE {
 dynObjConfigOwner OwnerString,
 dynObjConfigStatus ConfigEntryStatus }

NTCIP 1103 v03.52
Page 83

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

A.3.6.1 Dynamic Object Configuration Owner
dynObjConfigOwner OBJECT-TYPE
 SYNTAX OwnerString
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition> The entity that configured the associated
 dynamic object. This object may not be modified unless
 the associated dynObjConfigStatus object is equal to
 underCreation.
 <Object Definition> 1.3.6.1.4.1.1206.4.1.3.3.1.1
 "
 DEFVAL {""}
::= {dynObjConfigEntry 1}

A.3.6.2 Dynamic Object Configuration Status
dynObjConfigStatus OBJECT-TYPE
 SYNTAX ConfigEntryStatus
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition> Indicates the state of the associated dynamic
 object. Depending on the validity checks that are performed
 on the dynamic object definition, a set request may or may
 not be honored. See Clause 5.2.4.1 for a complete
 description.
 <Object Definition> 1.3.6.1.4.1.1206.4.1.3.3.1.2
 "
::= {dynObjConfigEntry 2}

END -- NTCIP1103v0352-STMP

A.4 TMP STMP-Statistics MIB Header
-- Filename: 1103v0352-STMP-Stats.MIB
-- Description: This MIB defines various objects related to
-- monitoring the Simple Transportation Management Protocol
-- (STMP).
-- Specifically, these include objects related to:
-- (a) communication statistics
-- This MIB replaces portions of TMIB-II.
--
-- MIB Revision History:
-- 08/01/96 Original standard approved
-- 01/01/98 Preliminary Release of TS 3.2 TMIB MIB formatted for 80
-- columns and no TABs
-- 01/07/98 Replaced some missed TABs with spaces
-- 07/08/98 Added Copyright Notice
-- 10/07/98 Amendment 1
-- 03/09/00 Removed all the special edits to that were done to use the
-- SMIC Compiler
-- Defined DisplayString to eliminate reference to RFC 1212
-- END is still left "Dynamic Object Data" group

NTCIP 1103 v03.52
Page 84

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

-- Changed filename and updated copyright years
-- Updated the MIB to Amendment 1
-- 08/09/00 Modified header format and wording of copyright and MIB
-- 11/16/01 Added objects for sfmp and stmp statistics
-- Moved security node into this MIB from NTCIP 1201
-- Added objects to support logical names
-- Renamed the module to NTCIP1103-A-2002 from TMIB-II
-- Renamed the text name to Transportation Management
-- Protocols MIB from Transportation MIB
-- Changed STATUS of all objects to optional to reflect new
-- conformance rules being defined in NTCIP 8004
-- 06/08/04 Moved report node into this MIB from NTCIP 1201
-- 09/27/04 Changed name of file.
-- 10/11/04 Per KLV e-mails 10/08/04 updated version and
-- Changed Index on logicalNameTranslation-index
-- from (0..255) to (1..255)
-- Changed all STATUS optional to mandatory
-- 06/13/05 Updated filename.
-- 08/09/05 Added object definitions for Trap Management, Watch Block
Objects
-- Updated filename; re-instantiated the OIDs for the
-- 13 dynamic objects.
-- 04/19/06 Broke the various logical groupings of objects into separate
-- MIBs to allow for separate compiling for various deployment
-- needs.
-- 10/09/07 Changed the Description fields of the objects to conform to the
-- new version of NTCIP 8004 v2.
-- 12/14/07 Changed the name of this MIB only to reflect version number.
-- 11/07/16 Changed the name of this MIB only to reflect version number.
-- 12/03/16 Modified to correct issues found in compiling MIBs with SMICng
-- v2.2.07
--
-- DISTRIBUTION NOTICE
--Copyright 2016 by the American Association of State Highway and
--Transportation Officials (AASHTO), the Institute of Transportation Engineers
--(ITE), and the National Electrical Manufacturers Association (NEMA). All
--intellectual property rights, including, but not limited to, the rights of
--reproduction in whole or in part in any form, translation into other
--languages and display are reserved by the copyright owners under the laws of
--the United States of America, the Universal Copyright Convention, the Berne
--Convention, and the International and Pan American Copyright Conventions.
--Except for the MIB, Do not copy without written permission of either AASHTO,
--ITE, or NEMA.
--
-- Joint NEMA, AASHTO, and ITE
-- NTCIP Management Information Base
-- DISTRIBUTION NOTICE
--
--To the extent and in the limited event these materials are distributed by
--AASHTO/ITE/NEMA in the form of a Management Information Base ("MIB"),
--AASHTO/ITE/NEMA extends the following permissions:
--
--(i) you may make and/or distribute unlimited copies (including derivative
--works) of the MIB, including copies for commercial distribution, provided
--that (a) each copy you make and/or distribute contains this Notice and (b)
--each derivative work of the MIB uses the same module name followed by "-",
--followed by your Internet Assigned Number Authority (IANA)-assigned

NTCIP 1103 v03.52
Page 85

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

--enterprise number;
--(ii) use of the MIB is restricted in that the syntax field may be modified
--only to reflect a more restrictive sub-range or enumerated values;
--(iii) the description field may be modified but only to the extent that:
--(a) only those bit values or enumerated values that are supported are
--listed; and (b) the more restrictive subrange is expressed.
--
--These materials are delivered "AS IS" without any warranties as to their
use
--or performance.
--
--AASHTO/ITE/NEMA AND THEIR SUPPLIERS DO NOT WARRANT THE PERFORMANCE OR
--RESULTS YOU MAY OBTAIN BY USING THESE MATERIALS. AASHTO/ITE/NEMA AND THEIR
--SUPPLIERS MAKE NO WARRANTIES, EXPRESS OR IMPLIED, AS TO NONINFRINGEMENT OF
--THIRD PARTY RIGHTS, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE.
--IN NO EVENT WILL AASHTO, ITE OR NEMA OR THEIR SUPPLIERS BE LIABLE TO YOU OR
--ANY THIRD PARTY FOR ANY CLAIM OR FOR ANY CONSEQUENTIAL, INCIDENTAL OR
--SPECIAL DAMAGES, INCLUDING ANY LOST PROFITS OR LOST SAVINGS, ARISING FROM
--YOUR REPRODUCTION OR USE OF THESE MATERIALS, EVEN IF AN AASHTO, ITE, OR
NEMA
--REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Some
--states or jurisdictions do not allow the exclusion or limitation of
--incidental, consequential or special damages, or the exclusion of implied
--warranties, so the above limitations may not apply to you.
--
--Use of these materials does not constitute an endorsement or affiliation by
--or between AASHTO, ITE, or NEMA and you, your company, or your products and
--services.
--
--NTCIP is a trademark of AASHTO/ITE/NEMA.
--
**

NTCIP1103v0352-STMP-Stats DEFINITIONS ::= BEGIN

IMPORTS
 Counter
 FROM RFC1155-SMI
 OBJECT-TYPE
 FROM RFC-1212
 application
 FROM NTCIP8004-2008;
-- EXPORTS EVERYTHING

A.4.1 STMP Statistics
stmp OBJECT IDENTIFIER ::= { application 3 }
-- <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.3

stmpStatistics OBJECT IDENTIFIER ::= { stmp 1 }
-- <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.3.1

A.4.1.1 Number of Incoming STMP Packets
stmpInPkts OBJECT-TYPE
 SYNTAX Counter

NTCIP 1103 v03.52
Page 86

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of Messages delivered to the
 STMP entity for processing.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.3.1.1
 "
::= { stmpStatistics 1 }

A.4.1.2 Number of Outgoing STMP Packets
stmpOutPkts OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of STMP PDU's which were
 generated by the STMP protocol entity .
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.3.1.2
 "
::= { stmpStatistics 2 }

A.4.1.3 Reserved
-- node 3 is reserved for bad version to parallel SNMP,
-- but it does not apply to STMP

A.4.1.4 Reserved
-- node 4 is reserved for bad community name to parallel
-- SNMP, but it does not apply to STMP

A.4.1.5 Reserved
-- node 5 is reserved for bad community use to parallel
-- SNMP, but it does not apply to STMP

A.4.1.6 Number of Incoming STMP Packets with Parsing Errors
stmpInParseErrs OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of OER errors encountered by
 the STMP protocol entity when decoding received STMP Messages.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.3.1.6
 "
::= { stmpStatistics 6 }

A.4.1.7 Reserved
-- node 7 is reserved for bad types to parallel SNMP, but
-- it does not apply to STMP

NTCIP 1103 v03.52
Page 87

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

A.4.1.8 Number of Incoming STMP Packets Indicating a Too Big Error
stmpInTooBigs OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of STMP PDUs which were
 delivered to the STMP protocol entity with a Message Type
 of Error and Error Number of tooBig.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.3.1.8
 "
::= { stmpStatistics 8 }

A.4.1.9 Number of Incoming STMP Packets Indicating a No Such Name Error
stmpInNoSuchNames OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of STMP PDUs which were
 delivered to the STMP protocol entity with a Message Type
 of Error and Error Number of noSuchName.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.3.1.9
 "
::= { stmpStatistics 9 }

A.4.1.10 Number of Incoming STMP Packets Indicating a Bad Value Error
stmpInBadValues OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of STMP PDUs which were
 delivered to the STMP protocol entity with a Message
 Type of Error and Error Number of badValue.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.3.1.10
 "
::= { stmpStatistics 10 }

A.4.1.11 Number of Incoming STMP Packets Indicating a Read-Only Error
stmpInReadOnlys OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of STMP PDUs which were
 delivered to the STMP protocol entity with a Message
 Type of Error and Error Number of readOnly.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.3.1.11
 "
::= { stmpStatistics 11 }

NTCIP 1103 v03.52
Page 88

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

A.4.1.12 Number of Incoming STMP Packets Indicating a General Error
stmpInGenErrs OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of STMP PDUs which were
 delivered to the STMP protocol entity with a Message
 Type of Error and Error Number of genError.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.3.1.12
 "
::= { stmpStatistics 12 }

A.4.1.13 Reserved
-- node 13 is reserved for total request vars to parallel
-- SNMP, but it does not apply to STMP

A.4.1.14 Reserved
-- node 14 is reserved for total set vars to parallel SNMP,
-- but it does not apply to STMP

A.4.1.15 Number of Incoming STMP Get Requests
stmpInGetRequests OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of STMP Get-Request PDUs which
 have been accepted and processed by the STMP protocol entity.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.3.1.15
 "
::= { stmpStatistics 15 }

A.4.1.16 Number of Incoming STMP Get Next Requests
stmpInGetNexts OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of STMP Get-Next PDUs which
 have been accepted and processed by the STMP protocol entity.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.3.1.16
 "
::= { stmpStatistics 16 }

A.4.1.17 Number of Incoming STMP Set Requests
stmpInSetRequests OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION

NTCIP 1103 v03.52
Page 89

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

 "<Definition> The total number of STMP Set-Request PDUs which
 have been accepted and processed by the STMP protocol entity.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.3.1.17
 "
::= { stmpStatistics 17 }

A.4.1.18 Number of Incoming STMP Get Responses
stmpInGetResponses OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of STMP Get-Response PDUs which
 have been accepted and processed by the STMP protocol entity.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.3.1.18
 "
::= { stmpStatistics 18 }

A.4.1.19 Reserved
-- node 19 is reserved for in trap responses to parallel
-- SNMP, but it does not apply to STMP

A.4.1.20 Number of Outgoing STMP Packets Indicating a Too Big Error
stmpOutTooBigs OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of STMP PDUs which were
 generated by the STMP protocol entity with a Message Type
 of Error and Error Number of tooBig.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.3.1.20
 "
::= { stmpStatistics 20 }

A.4.1.21 Number of Outgoing STMP Packets Indicating a No Such Name Error
stmpOutNoSuchNames OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of STMP PDUs which were
 generated by the STMP protocol entity with a Message Type
 of Error and Error Number of noSuchName.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.3.1.21
 "
::= { stmpStatistics 21 }

A.4.1.22 Number of Outgoing STMP Packets Indicating a Bad Value Error
stmpOutBadValues OBJECT-TYPE
 SYNTAX Counter

NTCIP 1103 v03.52
Page 90

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of STMP PDUs which were
 generated by the STMP protocol entity with a Message Type
 of Error and Error Number of badValue.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.3.1.22
 "
::= { stmpStatistics 22 }

A.4.1.23 Number of Outgoing STMP Packets Indicating a Read-Only Error
stmpOutReadOnly OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of STMP PDUs which were
 generated by the STMP protocol entity with a Message Type
 of Error and Error Number of readOnly.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.3.1.23
 "
::= { stmpStatistics 23 }

A.4.1.24 Number of Outgoing STMP Packets Indicating a General Error
stmpOutGenError OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of STMP PDUs which were
 generated by the STMP protocol entity with a Message Type
 of Error and Error Number of genErr.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.3.1.24
 "
::= { stmpStatistics 24 }

A.4.1.25 Number of Outgoing STMP Get Requests
stmpOutGetRequests OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of STMP PDU's with a Message
 Type of Get-Request, which have been generated by the STMP
 protocol entity.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.3.1.25
 "
::= { stmpStatistics 25 }

A.4.1.26 Number of Outgoing STMP Get Next Requests
stmpOutGetNexts OBJECT-TYPE
 SYNTAX Counter

NTCIP 1103 v03.52
Page 91

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of STMP PDU's with a Message
 Type of Get-Next, which have been generated by the STMP
 protocol entity.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.3.1.26
 "
::= { stmpStatistics 26 }

A.4.1.27 Number of Outgoing STMP Set Requests
stmpOutSetRequests OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of STMP PDU's with a Message
 Type of Set-Request, which have been generated by the STMP
 protocol entity.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.3.1.27
 "
::= { stmpStatistics 27 }

A.4.1.28 Number of Outgoing STMP Get Responses
stmpOutGetResponses OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of STMP PDU's with a Message
 Type of Get-Response, which have been generated by the STMP
 protocol entity.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.3.1.28
 "
::= { stmpStatistics 28 }

A.4.1.29 Reserved
-- node 29 is reserved for in trap responses to parallel
-- SNMP, but it does not apply to STMP

A.4.1.30 Reserved
-- node 30 is reserved for enable authentication traps to parallel
-- SNMP, but it does not apply to STMP

A.4.1.31 Number of Incoming STMP Set Request – No Replies
stmpInSetRequestsNoReply OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of STMP Set-Request No Reply

NTCIP 1103 v03.52
Page 92

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

 PDUs which have been accepted and processed by the STMP
 protocol entity.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.3.1.31
 "
::= { stmpStatistics 31 }

A.4.1.32 Number of Incoming STMP Set Responses
stmpInSetResponses OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of STMP Set-Response PDUs
 which have been accepted and processed by the STMP protocol
 entity.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.3.1.32
 "
::= { stmpStatistics 32 }

A.4.1.33 Number of Incoming STMP Error Responses
stmpInErrorResponses OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of STMP Error-Response PDUs
 which have been accepted and processed by the STMP protocol
 entity.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.3.1.33
 "
::= { stmpStatistics 33 }

A.4.1.34 Number of Outgoing STMP Set Request – No Replies
stmpOutSetRequestsNoReply OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of STMP PDU's with a Message
 Type of Set-Request-No-Reply, which have been generated by
 the STMP protocol entity.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.3.1.34
 "
::= { stmpStatistics 34 }

A.4.1.35 Number of Outgoing STMP Set Responses
stmpOutSetResponses OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of STMP PDU's with a Message

NTCIP 1103 v03.52
Page 93

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

 Type of Set-Response, which have been generated by the STMP
 protocol entity.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.3.1.35
 "
::= { stmpStatistics 35 }

A.4.1.36 Number of Outgoing STMP Error Responses
stmpOutErrorResponses OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The total number of STMP PDU's with a Message
 Type of Error-Response, which have been generated by the
 STMP protocol entity.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.3.1.36
 "
::= { stmpStatistics 36 }

END -- NTCIP1103v0352-STMP-Stats

A.5 TMP STMP Configuration MIB Header
-- Filename: 1103v0352-STMP-Config.MIB
-- Description: This MIB defines various objects related to configuring
-- the Simple Transportation Management Protocol (STMP).
-- Specifically, these include objects related to:
-- (a) configuration of objects
-- This MIB replaces portions of TMIB-II.
--
-- MIB Revision History:
-- 08/01/96 Original standard approved
-- 01/01/98 Preliminary Release of TS 3.2 TMIB MIB formatted for 80
-- columns and no TABs
-- 01/07/98 Replaced some missed TABs with spaces
-- 07/08/98 Added Copyright Notice
-- 10/07/98 Amendment 1
-- 03/09/00 Removed all the special edits to that were done to use the
-- SMIC Compiler
-- Defined DisplayString to eliminate reference to RFC 1212
-- END is still left "Dynamic Object Data" group
-- Changed filename and updated copyright years
-- Updated the MIB to Amendment 1
-- 08/09/00 Modified header format and wording of copyright and MIB
-- 11/16/01 Added objects for sfmp and stmp statistics
-- Moved security node into this MIB from NTCIP 1201
-- Added objects to support logical names
-- Renamed the module to NTCIP1103-A-2002 from TMIB-II
-- Renamed the text name to Transportation Management
-- Protocols MIB from Transportation MIB
-- Changed STATUS of all objects to optional to reflect new
-- conformance rules being defined in NTCIP 8004
-- 06/08/04 Moved report node into this MIB from NTCIP 1201
-- 09/27/04 Changed name of file.
-- 10/11/04 Per KLV e-mails 10/08/04 updated version and
-- Changed Index on logicalNameTranslation-index

NTCIP 1103 v03.52
Page 94

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

-- from (0..255) to (1..255)
-- Changed all STATUS optional to mandatory
-- 06/13/05 Updated filename.
-- 08/09/05 Added object definitions for Trap Management, Watch Block
Objects
-- Updated filename; re-instantiated the OIDs for the
-- 13 dynamic objects.
-- 04/19/06 Broke the various logical groupings of objects into separate
-- MIBs to allow for separate compiling for various deployment
-- needs.
-- 10/09/07 Changed the Description fields of the objects to conform to the
-- new version of NTCIP 8004 v2.
-- 12/14/07 Changed the name of this MIB only to reflect the version number.
-- 11/07/16 Changed the name of this MIB only to reflect the version number.
-- 12/03/16 Modified to correct issues found in compiling MIBs with SMICng
-- v2.2.07
--
-- DISTRIBUTION NOTICE
--Copyright 2016 by the American Association of State Highway and
--Transportation Officials (AASHTO), the Institute of Transportation Engineers
--(ITE), and the National Electrical Manufacturers Association (NEMA). All
--intellectual property rights, including, but not limited to, the rights of
--reproduction in whole or in part in any form, translation into other
--languages and display are reserved by the copyright owners under the laws of
--the United States of America, the Universal Copyright Convention, the Berne
--Convention, and the International and Pan American Copyright Conventions.
--Except for the MIB, Do not copy without written permission of either AASHTO,
--ITE, or NEMA.
--
-- Joint NEMA, AASHTO, and ITE
-- NTCIP Management Information Base
-- DISTRIBUTION NOTICE
--
--To the extent and in the limited event these materials are distributed by
--AASHTO/ITE/NEMA in the form of a Management Information Base ("MIB"),
--AASHTO/ITE/NEMA extends the following permissions:
--
--(i) you may make and/or distribute unlimited copies (including derivative
--works) of the MIB, including copies for commercial distribution, provided
--that (a) each copy you make and/or distribute contains this Notice and (b)
--each derivative work of the MIB uses the same module name followed by "-",
--followed by your Internet Assigned Number Authority (IANA)-assigned
--enterprise number;
--(ii) use of the MIB is restricted in that the syntax field may be modified
--only to reflect a more restrictive sub-range or enumerated values;
--(iii) the description field may be modified but only to the extent that:
--(a) only those bit values or enumerated values that are supported are
--listed; and (b) the more restrictive subrange is expressed.
--
--These materials are delivered "AS IS" without any warranties as to their
use
--or performance.
--
--AASHTO/ITE/NEMA AND THEIR SUPPLIERS DO NOT WARRANT THE PERFORMANCE OR
--RESULTS YOU MAY OBTAIN BY USING THESE MATERIALS. AASHTO/ITE/NEMA AND THEIR
--SUPPLIERS MAKE NO WARRANTIES, EXPRESS OR IMPLIED, AS TO NONINFRINGEMENT OF
--THIRD PARTY RIGHTS, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE.

NTCIP 1103 v03.52
Page 95

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

--IN NO EVENT WILL AASHTO, ITE OR NEMA OR THEIR SUPPLIERS BE LIABLE TO YOU OR
--ANY THIRD PARTY FOR ANY CLAIM OR FOR ANY CONSEQUENTIAL, INCIDENTAL OR
--SPECIAL DAMAGES, INCLUDING ANY LOST PROFITS OR LOST SAVINGS, ARISING FROM
--YOUR REPRODUCTION OR USE OF THESE MATERIALS, EVEN IF AN AASHTO, ITE, OR
NEMA
--REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Some
--states or jurisdictions do not allow the exclusion or limitation of
--incidental, consequential or special damages, or the exclusion of implied
--warranties, so the above limitations may not apply to you.
--
--Use of these materials does not constitute an endorsement or affiliation by
--or between AASHTO, ITE, or NEMA and you, your company, or your products and
--services.
--
--NTCIP is a trademark of AASHTO/ITE/NEMA.
--
**

NTCIP1103v0352-STMP-Config DEFINITIONS ::= BEGIN

IMPORTS
 OBJECT-TYPE
 FROM RFC-1212
 profiles
 FROM NTCIP8004-2008;
-- EXPORTS EVERYTHING

A.5.1 STMP Configuration
profilesSTMP OBJECT IDENTIFIER ::= { profiles 2 }
-- <Object Identifier> 1.3.6.1.4.1.1206.4.1.2.2

-- This node is an identifier used to group all objects for support
-- of configuration functions that are common to device types that
-- support the STMP protocol. The objects under this node are placed
-- under the Protocols\Profiles\STMP subtree within the NEMA node.

A.5.1.1 Dynamic Object Persistence
dynamicObjectPersistence OBJECT-TYPE
 SYNTAX INTEGER (0..65535)
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition> The maximum power outage time in minutes that
 may occur before all STMP dynamic object definitions in a
 device shall be invalidated. If this object is set to zero
 then the existing dynamic object definintions shall be
 invalidated on device power up. If this object is set to
 its maximum value (65535), then the existing dynamic object
 definitions shall nominally persist for an infinite period
 (in practice this is limited by the non-volatile memory
 capabilities of the device). This object shall not be
 invalidated due to power outages of any duration. A device
 that supports STMP dynamic objects shall support this object.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.2.2.1

NTCIP 1103 v03.52
Page 96

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

 "
 DEFVAL {65535}
::= { profilesSTMP 1 }

A.5.1.2 Dynamic Object Configuration ID
dynamicObjectTableConfigID OBJECT-TYPE
 SYNTAX INTEGER (0..65535)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> Specifies a relatively unique ID (e.g., this
 could be a counter, a check-sum, etc.) for the current
 values stored in the dynObjVariable and dynObjConfigOwner
 objects for all dynamic objects with a dynObjStatus of valid.
 This value shall be calculated on the change of any
 dynObjStatus to or from the valid state. This value reported
 by this object shall not change unless there has been a
 change in the data since the last request; however a genErr
 shall be returned if the unique ID value has not yet been
 updated. A management station will be able to detect any
 change in the configuration of dynamic objects by monitoring
 this value after it has established a baseline.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.2.2.2
 "
::= { profilesSTMP 2 }

END --NTCIP1103v0352-STMP-Config

A.6 TMP LogicalNames MIB Header
-- Filename: 1103v0352-LogicalNames.MIB
-- Description: This MIB defines various objects related to mapping
-- between logical device names and network addresses.
-- Specifically, these include objects related to:
-- (a) the mapping of logical names to network addresses
-- This MIB replaces portions of TMIB-II.
--
-- MIB Revision History:
-- 08/01/96 Original standard approved
-- 01/01/98 Preliminary Release of TS 3.2 TMIB MIB formatted for 80
-- columns and no TABs
-- 01/07/98 Replaced some missed TABs with spaces
-- 07/08/98 Added Copyright Notice
-- 10/07/98 Amendment 1
-- 03/09/00 Removed all the special edits to that were done to use the
-- SMIC Compiler
-- Defined DisplayString to eliminate reference to RFC 1212
-- END is still left "Dynamic Object Data" group
-- Changed filename and updated copyright years
-- Updated the MIB to Amendment 1
-- 08/09/00 Modified header format and wording of copyright and MIB
-- 11/16/01 Added objects for sfmp and stmp statistics
-- Moved security node into this MIB from NTCIP 1201
-- Added objects to support logical names
-- Renamed the module to NTCIP1103-A-2002 from TMIB-II

NTCIP 1103 v03.52
Page 97

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

-- Renamed the text name to Transportation Management
-- Protocols MIB from Transportation MIB
-- Changed STATUS of all objects to optional to reflect new
-- conformance rules being defined in NTCIP 8004
-- 06/08/04 Moved report node into this MIB from NTCIP 1201
-- 09/27/04 Changed name of file.
-- 10/11/04 Per KLV e-mails 10/08/04 updated version and
-- Changed Index on logicalNameTranslation-index
-- from (0..255) to (1..255)
-- Changed all STATUS optional to mandatory
-- 06/13/05 Updated filename.
-- 06/22/05 Commented DEFVAL in logicalNameTranslatioNetworkAddress to get
-- around incorrect syntax error. "DEFVAL {0}" for logicalName-
-- TranslatioNetworkAddress is correct.
-- 08/09/05 Added object definitions for Trap Management, Watch Block
-- Objects
-- Updated filename; re-instantiated the OIDs for the
-- 13 dynamic objects.
-- 04/19/06 Broke the various logical groupings of objects into separate
-- MIBs to allow for separate compiling for various deployment
-- needs.
-- 10/09/07 Changed the Description fields of the objects to conform to the
-- new version of NTCIP 8004 v2.
-- 10/25/07 Corrected DEFVAL of logicalNameTranslationLogicalName
-- 12/14/07 Changed the name of this MIB only to reflect version number.
-- 11/07/16 Changed the name of this MIB only to reflect version number.
-- 12/03/16 Modified to correct issues found in compiling MIBs with SMICng
-- v2.2.07
--
-- DISTRIBUTION NOTICE
--Copyright 2016 by the American Association of State Highway and
--Transportation Officials (AASHTO), the Institute of Transportation Engineers
--(ITE), and the National Electrical Manufacturers Association (NEMA). All
--intellectual property rights, including, but not limited to, the rights of
--reproduction in whole or in part in any form, translation into other
--languages and display are reserved by the copyright owners under the laws of
--the United States of America, the Universal Copyright Convention, the Berne
--Convention, and the International and Pan American Copyright Conventions.
--Except for the MIB, Do not copy without written permission of either AASHTO,
--ITE, or NEMA.
--
-- Joint NEMA, AASHTO, and ITE
-- NTCIP Management Information Base
-- DISTRIBUTION NOTICE
--
--To the extent and in the limited event these materials are distributed by
--AASHTO/ITE/NEMA in the form of a Management Information Base ("MIB"),
--AASHTO/ITE/NEMA extends the following permissions:
--
--(i) you may make and/or distribute unlimited copies (including derivative
--works) of the MIB, including copies for commercial distribution, provided
--that (a) each copy you make and/or distribute contains this Notice and (b)
--each derivative work of the MIB uses the same module name followed by "-",
--followed by your Internet Assigned Number Authority (IANA)-assigned
--enterprise number;
--(ii) use of the MIB is restricted in that the syntax field may be modified
--only to reflect a more restrictive sub-range or enumerated values;

NTCIP 1103 v03.52
Page 98

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

--(iii) the description field may be modified but only to the extent that:
--(a) only those bit values or enumerated values that are supported are
--listed; and (b) the more restrictive subrange is expressed.
--
--These materials are delivered "AS IS" without any warranties as to their
use
--or performance.
--
--AASHTO/ITE/NEMA AND THEIR SUPPLIERS DO NOT WARRANT THE PERFORMANCE OR
--RESULTS YOU MAY OBTAIN BY USING THESE MATERIALS. AASHTO/ITE/NEMA AND THEIR
--SUPPLIERS MAKE NO WARRANTIES, EXPRESS OR IMPLIED, AS TO NONINFRINGEMENT OF
--THIRD PARTY RIGHTS, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE.
--IN NO EVENT WILL AASHTO, ITE OR NEMA OR THEIR SUPPLIERS BE LIABLE TO YOU OR
--ANY THIRD PARTY FOR ANY CLAIM OR FOR ANY CONSEQUENTIAL, INCIDENTAL OR
--SPECIAL DAMAGES, INCLUDING ANY LOST PROFITS OR LOST SAVINGS, ARISING FROM
--YOUR REPRODUCTION OR USE OF THESE MATERIALS, EVEN IF AN AASHTO, ITE, OR
NEMA
--REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Some
--states or jurisdictions do not allow the exclusion or limitation of
--incidental, consequential or special damages, or the exclusion of implied
--warranties, so the above limitations may not apply to you.
--
--Use of these materials does not constitute an endorsement or affiliation by
--or between AASHTO, ITE, or NEMA and you, your company, or your products and
--services.
--
--NTCIP is a trademark of AASHTO/ITE/NEMA.
--
**

NTCIP1103v0352-LogicalNames DEFINITIONS ::= BEGIN

IMPORTS
 NetworkAddress
 FROM RFC1155-SMI
 OBJECT-TYPE
 FROM RFC-1212
 RowStatusStatic, application
 FROM NTCIP8004-2008;
-- EXPORTS EVERYTHING

logicalNames OBJECT IDENTIFIER ::= { application 4 }
-- <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.4
-- This node is used to define objects to allow a mapping between
-- logical device names and network addresses.

A.6.1 Maximum Logical Name Translations
logicalNameTranslationTableMaxEntries OBJECT-TYPE
 SYNTAX INTEGER (1..255)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> This object specifies the maximum number of
 rows that may be implemented in the logical name translation
 table.

NTCIP 1103 v03.52
Page 99

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.4.1
 "
::= { logicalNames 1 }

A.6.2 Logical Name Translation Table
logicalNameTranslationTable OBJECT-TYPE
 SYNTAX SEQUENCE OF LogicalNameTranslationEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "<Definition> This table defines the logical names of the
 other network entities with which the device may communicate
 and maps these names to the network addresses of those
 devices.
 <TableType> static
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.4.2"
::= { logicalNames 2 }

logicalNameTranslationEntry OBJECT-TYPE
 SYNTAX LogicalNameTranslationEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "<Definition> This is one logical row of the logical name
 translation table.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.4.2.1
 "
 INDEX { logicalNameTranslationIndex }
::= { logicalNameTranslationTable 1}

LogicalNameTranslationEntry::=SEQUENCE {
 logicalNameTranslationIndex INTEGER,
 logicalNameTranslationLogicalName OCTET STRING,
 logicalNameTranslationNetworkAddress NetworkAddress,
 logicalNameTranslationStatus RowStatusStatic }

A.6.2.1 Index for the Logical Name Translation
logicalNameTranslationIndex OBJECT-TYPE
 SYNTAX INTEGER (1..255)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> This object provides the index into the
 logical name table.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.4.2.1.1"
::= { logicalNameTranslationEntry 1 }

A.6.2.2 Logical Name for the Logical Name Translation
logicalNameTranslationLogicalName OBJECT-TYPE
 SYNTAX OCTET STRING (SIZE (0..32))
 ACCESS read-write
 STATUS mandatory

NTCIP 1103 v03.52
Page 100

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

 DESCRIPTION
 "<Definition> This object defines the logical name of the
 network entity for which this row is defined.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.4.2.1.2"
 DEFVAL { "" }
::= { logicalNameTranslationEntry 2 }

A.6.2.3 Network Address of the Logical Name Translation
logicalNameTranslationNetworkAddress OBJECT-TYPE
 SYNTAX NetworkAddress
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition> This object defines the network address of the
 associated network entity for the given profile. If the
 transport profile is ‘internet,’ the network address is the
 IP address of the entity stored as an IpAddress. If the
 transport profile is ‘t2,’ there is no physical network
 address, but the entity is assigned a dummy IP address in
 order to abstract the mapping to the ipNetToMediaTable
 defined in MIB-II.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.4.2.1.3"
-- DEFVAL { 0 } See 06/22/05 Comment
::= { logicalNameTranslationEntry 3 }

A.6.2.4 Logical Name Translation Status
logicalNameTranslationStatus OBJECT-TYPE
 SYNTAX RowStatusStatic
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition> This object allows for the management of rows
 within the table.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.4.2.1.4"
 DEFVAL { invalid }
::= { logicalNameTranslationEntry 4 }

END -- NTCIP1103v0352-LogicalNames

A.7 TMP Report MIB Header
-- Filename: 1103v0352-Report.MIB
-- Description: This MIB defines various objects related to managing
-- event information for the purpose of logging data within the
-- device.
-- Specifically, these include objects related to:
-- (a) managing event information that can be logged in the
-- device
-- This MIB replaces portions of TMIB-II.
--
-- MIB Revision History:
-- 08/01/96 Original standard approved
-- 01/01/98 Preliminary Release of TS 3.2 TMIB MIB formatted for 80

NTCIP 1103 v03.52
Page 101

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

-- columns and no TABs
-- 01/07/98 Replaced some missed TABs with spaces
-- 07/08/98 Added Copyright Notice
-- 10/07/98 Amendment 1
-- 03/09/00 Removed all the special edits to that were done to use the
-- SMIC Compiler
-- Defined DisplayString to eliminate reference to RFC 1212
-- END is still left "Dynamic Object Data" group
-- Changed filename and updated copyright years
-- Updated the MIB to Amendment 1
-- 08/09/00 Modified header format and wording of copyright and MIB
-- 11/16/01 Added objects for sfmp and stmp statistics
-- Moved security node into this MIB from NTCIP 1201
-- Added objects to support logical names
-- Renamed the module to NTCIP1103-A-2002 from TMIB-II
-- Renamed the text name to Transportation Management
-- Protocols MIB from Transportation MIB
-- Changed STATUS of all objects to optional to reflect new
-- conformance rules being defined in NTCIP 8004
-- 06/08/04 Moved report node into this MIB from NTCIP 1201
-- 09/27/04 Changed name of file.
-- 10/11/04 Per KLV e-mails 10/08/04 updated version and
-- Changed Index on logicalNameTranslation-index
-- from (0..255) to (1..255)
-- Changed all STATUS optional to mandatory
-- 06/13/05 Updated filename.
-- 08/09/05 Added object definitions for Trap Management, Watch Block
Objects
-- Updated filename; re-instantiated the OIDs for the
-- 13 dynamic objects.
-- 04/19/06 Broke the various logical groupings of objects into separate
-- MIBs to allow for separate compiling for various deployment
-- needs.
-- 12/14/07 Changed the name of this MIB only to reflect version number.
-- 11/07/16 Changed the name of this MIB only to reflect version number.
-- 12/03/16 Modified to correct issues found in compiling MIBs with SMICng
-- v2.2.07
--
-- DISTRIBUTION NOTICE
--Copyright 2016 by American Association of State Highway and
--Transportation Officials (AASHTO), Institute of Transportation Engineers
--(ITE), and National Electrical Manufacturers Association (NEMA). All
--intellectual property rights, including, but not limited to, the rights of
--reproduction in whole or in part in any form, translation into other
--languages and display are reserved by the copyright owners under the laws
of
--the United States of America, the Universal Copyright Convention, the Berne
--Convention, and the International and Pan American Copyright Conventions.
--Except for the MIB, Do not copy without written permission of either
-- AASHTO, ITE, or NEMA.
--
-- Joint NEMA, AASHTO, and ITE
-- NTCIP Management Information Base
-- DISTRIBUTION NOTICE
--
--To the extent and in the limited event these materials are distributed by
--AASHTO/ITE/NEMA in the form of a Management Information Base ("MIB"),

NTCIP 1103 v03.52
Page 102

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

--AASHTO/ITE/NEMA extends the following permissions:
--
--(i) you may make and/or distribute unlimited copies (including derivative
--works) of the MIB, including copies for commercial distribution, provided
--that (a) each copy you make and/or distribute contains this Notice and (b)
--each derivative work of the MIB uses the same module name followed by "-",
--followed by your Internet Assigned Number Authority (IANA)-assigned
--enterprise number;
--(ii) use of the MIB is restricted in that the syntax field may be modified
--only to reflect a more restrictive sub-range or enumerated values;
--(iii) the description field may be modified but only to the extent that:
--(a) only those bit values or enumerated values that are supported are
--listed; and (b) the more restrictive subrange is expressed.
--
--These materials are delivered "AS IS" without any warranties as to their
use
--or performance.
--
--AASHTO/ITE/NEMA AND THEIR SUPPLIERS DO NOT WARRANT THE PERFORMANCE OR
--RESULTS YOU MAY OBTAIN BY USING THESE MATERIALS. AASHTO/ITE/NEMA AND THEIR
--SUPPLIERS MAKE NO WARRANTIES, EXPRESS OR IMPLIED, AS TO NONINFRINGEMENT OF
--THIRD PARTY RIGHTS, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE.
--IN NO EVENT WILL AASHTO, ITE OR NEMA OR THEIR SUPPLIERS BE LIABLE TO YOU OR
--ANY THIRD PARTY FOR ANY CLAIM OR FOR ANY CONSEQUENTIAL, INCIDENTAL OR
--SPECIAL DAMAGES, INCLUDING ANY LOST PROFITS OR LOST SAVINGS, ARISING FROM
--YOUR REPRODUCTION OR USE OF THESE MATERIALS, EVEN IF AN AASHTO, ITE, OR
NEMA
--REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Some
--states or jurisdictions do not allow the exclusion or limitation of
--incidental, consequential or special damages, or the exclusion of implied
--warranties, so the above limitations may not apply to you.
--
--Use of these materials does not constitute an endorsement or affiliation by
--or between AASHTO, ITE, or NEMA and you, your company, or your products and
--services.
--
--NTCIP is a trademark of AASHTO/ITE/NEMA.
--
**

NTCIP1103v0352-Report DEFINITIONS ::= BEGIN

IMPORTS
 Counter, Opaque, null
 FROM RFC1155-SMI
 OBJECT-TYPE
 FROM RFC-1212
 global
 FROM NTCIP8004-2008;
-- EXPORTS EVERYTHING

A.7.1 Report Parameter Node
globalReport OBJECT IDENTIFIER ::= { global 4 }
-- <Object Identifier> 1.3.6.1.4.1.1206.4.2.6.4

NTCIP 1103 v03.52
Page 103

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

-- This node is an identifier used to organize all objects for
-- support of report functions that are common to most device types.

-- NOTE—The event class table is presented first to ease
-- the readability of the standard; however, the node numbers
-- assigned to this table reflect the original node numbering used
-- in the original 1996 specification to preserve backwards
-- compatibility with existing systems.

A.7.2 Maximum Event Classes Parameter
maxEventClasses OBJECT-TYPE
 SYNTAX INTEGER (1..255)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The object defines the number of rows in the
 eventClassTable that this device supports. This is a static
 table.
 <Unit>EventClass
 <Object Identifier> 1.3.6.1.4.1.1206.4.2.6.4.5
 "
::= { globalReport 5 }

A.7.3 Event Class Table
eventClassTable OBJECT-TYPE
 SYNTAX SEQUENCE OF EventClassEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "<Definition>This table is used to configure event logging
 limits and log table maintenance.
 <TableType> static
 <Object Identifier> 1.3.6.1.4.1.1206.4.2.6.4.6
 "
::= { globalReport 6 }

eventClassEntry OBJECT-TYPE
 SYNTAX EventClassEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "<Definition>This defines a row in the Event Class Table
 <Object Identifier> 1.3.6.1.4.1.1206.4.2.6.4.6.1
 "
 INDEX { eventClassNumber }
::= { eventClassTable 1 }

EventClassEntry ::= SEQUENCE {
 eventClassNumber INTEGER,
 eventClassLimit INTEGER,
 eventClassClearTime Counter,
 eventClassDescription OCTET STRING,
 eventClassNumRowsInLog INTEGER,
 eventClassNumEvents INTEGER }

NTCIP 1103 v03.52
Page 104

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

A.7.3.1 Event Class Number Parameter
eventClassNumber OBJECT-TYPE
 SYNTAX INTEGER (1..255)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition>This is a class value that is to be configured.
 <Object Identifier> 1.3.6.1.4.1.1206.4.2.6.4.6.1.1
 "
::= { eventClassEntry 1 }

A.7.3.2 Event Class Limit Parameter
eventClassLimit OBJECT-TYPE
 SYNTAX INTEGER (0..255)
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition>This object specifies the maximum number of
 events of the associated class to store in the log. Once
 the limit is reached, the oldest entry of the matching
 class will be overwritten by any new entry of the same
 class. If the value of this object is set to a number
 smaller than the current number of rows within this class
 in the eventLogTable, then the oldest entries shall be
 lost/deleted. The sum of all event class limits shall not
 exceed the maxEventLogSize object; if a SET operation to
 this object causes the sum of eventClassLimit objects to
 exceed maxEventLogSize, then the agent shall respond with
 a genErr.
 The event cannot be logged if the eventClass has an
 eventClassLimit of zero (0).
 <Unit>Event
 <Object Identifier> 1.3.6.1.4.1.1206.4.2.6.4.6.1.2
 "
::= { eventClassEntry 2 }

A.7.3.3 Event Class Clear Time Parameter
eventClassClearTime OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition>This object is used to clear multiple event log
 entries from the eventLogTable. All events of this class
 that have an eventLogTime equal to or less than this object
 shall be cleared from the eventLogTable. If this object has
 a value greater than the current value of globalTime, it
 shall prevent the logging of any events of this class.
 <Unit>second
 <Object Identifier> 1.3.6.1.4.1.1206.4.2.6.4.6.1.3
 "
 DEFVAL {0}
::= { eventClassEntry 3 }

NTCIP 1103 v03.52
Page 105

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

A.7.3.4 Event Class Description Parameter
eventClassDescription OBJECT-TYPE
 SYNTAX OCTET STRING
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition>This object specifies a description of the class
 in ASCII characters.
 <Object Identifier> 1.3.6.1.4.1.1206.4.2.6.4.6.1.4
 "
::= { eventClassEntry 4 }

A.7.3.5 Event Class Number of Rows in Event Log Table Parameter
eventClassNumRowsInLog OBJECT-TYPE
 SYNTAX INTEGER (0..255)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition>The number of rows for this class that currently
 exist in the eventLogTable.
 <Unit>Event
 <Object Identifier> 1.3.6.1.4.1.1206.4.2.6.4.6.1.5
 "
::= { eventClassEntry 5 }

A.7.3.6 Class Event Log Counter Parameter
eventClassNumEvents OBJECT-TYPE
 SYNTAX INTEGER (0..65535)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> This object is a counter that gets incremented
 every time an event occurs for this class; it shall
 initialize to zero at power up. The value shall roll over
 each time it exceeds the maximum of 65535.
 <Unit>Events
 <Object Identifier> 1.3.6.1.4.1.1206.4.2.6.4.6.1.6
 "
::= { eventClassEntry 6 }

A.7.4 Maximum Event Log Configurations Parameter
maxEventLogConfigs OBJECT-TYPE
 SYNTAX INTEGER (1..65535)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition>The number of rows that exist in the static
 eventLogConfig table for this device.
 <Unit>EventType
 <Object Identifier> 1.3.6.1.4.1.1206.4.2.6.4.1
 "
::= { globalReport 1}

NTCIP 1103 v03.52
Page 106

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

A.7.5 Event Log Configuration Table
eventLogConfigTable OBJECT-TYPE
 SYNTAX SEQUENCE OF EventLogConfigEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "<Definition>A table containing Event Log Configuration
 information. The number of rows in this table is equal to
 the maxEventLogConfigs object. This table defines the
 parameters that the device will monitor to create an event.
 <TableType> static
 <Object Identifier> 1.3.6.1.4.1.1206.4.2.6.4.2
 "
::= { globalReport 2 }

eventLogConfigEntry OBJECT-TYPE
 SYNTAX EventLogConfigEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "<Definition>This object defines an entry in the event log
 configuration table.
 <Object Identifier> 1.3.6.1.4.1.1206.4.2.6.4.2.1
 "
 INDEX { eventConfigID }
::= { eventLogConfigTable 1 }

EventLogConfigEntry ::= SEQUENCE {
 eventConfigID INTEGER,
 eventConfigClass INTEGER,
 eventConfigMode INTEGER,
 eventConfigCompareValue INTEGER,
 eventConfigCompareValue2 INTEGER,
 eventConfigCompareOID OBJECT IDENTIFIER,
 eventConfigLogOID OBJECT IDENTIFIER,
 eventConfigAction INTEGER,
 eventConfigStatus INTEGER }

A.7.5.1 Event Log Configuration ID Parameter
eventConfigID OBJECT-TYPE
 SYNTAX INTEGER (1..65535)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition>This object contains the row number which is
 used to identify the event associated with this row in the
 eventLogConfigTable. The number of event IDs shall not
 exceed the value indicated in the maxEventLogConfigs object.
 <Object Identifier> 1.3.6.1.4.1.1206.4.2.6.4.2.1.1
 "
::= { eventLogConfigEntry 1 }

A.7.5.2 Event Log Configuration Class Parameter
eventConfigClass OBJECT-TYPE

NTCIP 1103 v03.52
Page 107

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

 SYNTAX INTEGER (1..255)
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition>This object contains the class value to assign
 to the event associated with this row in the event
 configuration table. This value is used in the event log
 table to organize various events defined in this table into
 logical groupings. This value shall not exceed the
 maxEventClasses object value.

 NOTE—The event cannot be logged if the EventClass has an
 eventClassLimit of zero (0).
 <Object Identifier> 1.3.6.1.4.1.1206.4.2.6.4.2.1.2
 "
 DEFVAL {1}
::= { eventLogConfigEntry 2 }

A.7.5.3 Event Log Configuration Mode Parameter
eventConfigMode OBJECT-TYPE
 SYNTAX INTEGER { other (1),
 onChange (2),
 greaterThanValue (3),
 smallerThanValue (4),
 hysteresisBound (5),
 periodic (6),
 andedWithValue (7) }
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition>This object specifies the mode of operation for
 this event. The modes are defined as follows:
 Value Description
 other the event mode of operation is not
 described in this standard, refer to the
 device manual.
 onChange create a log entry when the object value
 referenced by eventConfigCompareOID
 changes. The values of
 eventConfigCompareValue and
 eventConfigCompareValue2 are ignored in
 this mode.
 greaterThanValue create a log entry when the object value
 referenced by eventConfigCompareOID
 becomes greater than the value of
 eventConfigCompareValue for the time
 (tenth seconds) defined by
 eventConfigCompareValue2 (zero means
 immediate logging).
 smallerThanValue create a log entry when the object value
 referenced by eventConfigCompareOID
 becomes less than the value of
 eventConfigCompareValue for the time
 (tenth seconds) defined by
 eventConfigCompareValue2 (zero means
 immediate logging).

NTCIP 1103 v03.52
Page 108

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

 hysteresisBound create a log entry when the object value
 referenced by eventConfigCompareOID
 becomes less than or greater than the
 bound values. The lowerbound value is the
 lower value of eventConfigCompareValue and
 eventConfigCompareValue2; the upperbound
 value is the higher value of the two values.

 When the object value becomes greater than
 the upper bound value, subsequent logging of
 upperbound conditions shall not occur until
 the object value becomes less than the
 lower bound value.

 When the object value becomes less than
 the lower bound value, subsequent logging
 of lowerbound conditions shall not occur
 until the object value becomes greater
 than the upper bound value.
 periodic create a log entry every x seconds, where
 x is defined by the value stored in
 eventConfigCompareValue. The values stored
 in eventConfigCompareValue2 and
 eventConfigCompareOID are ignored in this
 mode.
 andedWithValue create a log entry when the object value
 referenced by eventConfigCompareOID ANDED
 with the value of eventConfigCompareValue
 is NOT equal to zero for the time (tenth
 seconds) defined by eventConfigCompareValue2
 (zero means immediate logging). This allows
 monitoring of a specific bit; the condition
 becomes true anytime that any one of the
 selected bits become true.

 <Object Identifier> 1.3.6.1.4.1.1206.4.2.6.4.2.1.3
 "
 DEFVAL {onChange}
::= { eventLogConfigEntry 3 }

A.7.5.4 Event Log Configuration Compare Value Parameter
eventConfigCompareValue OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition>This object contains the comparison value to
 use with eventConfigMode values (greaterThanValue,
 smallerThanValue, hysteresisBound). No value within this
 object is necessary when the eventConfigMode-object has the
 value onChange (2).
 <Object Identifier> 1.3.6.1.4.1.1206.4.2.6.4.2.1.4
 "
 DEFVAL {0}
::= { eventLogConfigEntry 4 }

NTCIP 1103 v03.52
Page 109

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

A.7.5.5 Event Log Configuration Compare Value 2 Parameter
eventConfigCompareValue2 OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition>If the eventConfigMode is set to
 hysteresisBound, this object specifies the second comparison
 value for the hysteresis. If the eventConfigMode is set to
 greaterThanValue, smallerThanValue, or andedWithValue, this
 object specifies the time (in tenths of seconds, +1 tenth / -0
 tenths) for which the samples used for comparison shall be
 true prior to the event condition becoming true. If the
 eventConfigMode is set to onChange or periodic, the value of
 this object shall be ignored.

 The amount of time the condition shall be true is measured in
 tenths of a second. The accuracy of this timer is limited to
 +1 tenth of a second and –0 tenths of a second. If the event
 is true for at least the time shown in this parameter +1
 tenth of a second, the condition shall trigger a log entry.
 It is recognized that some designs only sample the condition
 periodically, in which case the condition shall be true for
 at least the time indicated by this object before the event
 becomes true and the event shall always become true if the
 condition is true for a duration equal to the value shown in
 this object plus 1 tenth of a second.
 <Object Identifier> 1.3.6.1.4.1.1206.4.2.6.4.2.1.5
 "
 DEFVAL {0}
::= { eventLogConfigEntry 5 }

A.7.5.6 Event Log Configuration Compare Object Identifier Parameter
eventConfigCompareOID OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition> This object contains the object identifier
 which references the value against which the comparison
 is made. If the eventConfigMode is set to periodic, the
 value of this object shall be ignored. If the
 eventConfigMode is set to greaterThanValue, smallerThanValue
 or hysteresisBound, this object shall reference an object
 whose SYNTAX resolves to a ranged or unranged INTEGER. As
 with all other objects that are sub-ranged by a given
 implementation, an agent should return a badValue error if
 it receives a set command indicating a OID which is not
 supported by the implementation or which is not null.
 <Object Identifier> 1.3.6.1.4.1.1206.4.2.6.4.2.1.6
 "
 DEFVAL {null}
::= { eventLogConfigEntry 6 }

NTCIP 1103 v03.52
Page 110

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

A.7.5.7 Event Log Configuration Log Object Identifier Parameter
eventConfigLogOID OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition>This object contains the object identifier which
 indicates what value to log when a condition or event occurs
 (e.g., log the phase display when the watchdog alarm status
 changes). As with all other objects that are sub-ranged by a
 given implementation, an agent should return a badValue
 error if it receives a set command indicating a value which
 is not supported by the implementation. The valid value
 range of this object shall not include any values, other
 than null, that do not correspond to objects that may exist
 within the agent, although it may be further restricted.

 The valid value range of this object shall not include
 objects under the following nodes:
 Security - { nema transportation devices global security }
 CHAP - { nema transportation protocols layers chap }

 <Object Identifier> 1.3.6.1.4.1.1206.4.2.6.4.2.1.7
 "
 DEFVAL {null}
::= { eventLogConfigEntry 7 }

A.7.5.8 Event Log Configuration Action Parameter
eventConfigAction OBJECT-TYPE
 SYNTAX INTEGER { other (1),
 disabled (2),
 log (3) }
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition>The value of this object indicates what action
 shall take place when this event occurs.
 other - indicates that the action is other than defined in this

standard. This value exists in order to support proprietary
event logging mechanisms configured by other means not
specified in this standard. If this value is used in a SET
request, the agent shall respond with a badValueError.

 disabled - no event log entry shall be generated or recorded due to this
event. In an agent complying with NTCIP 1103 v03 or later,
this event shall not be used to trigger NTCIP traps, nor to
construct NTCIP trap messages.

 log - an event log entry shall be generated when this event occurs.
In an agent complying with NTCIP 1103 v03 and later, this may
trigger an NTCIP trap (see the eventConfigID index element of
trapTable). If eventConfigClass refers to an eventClassTable
row having eventClassLimit = 0, the log entry’s eventLogValue
shall be used to construct any necessary trap messages
implied by the associated trapTable rows, but the log entry
shall then be discarded and not added to the eventLogTable.
If the eventClassLimit is greater than zero, the log entry

NTCIP 1103 v03.52
Page 111

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

shall be added to the eventLogTable, subject to the
constraints imposed by the associated eventConfigClass.

 <Object Identifier> 1.3.6.1.4.1.1206.4.2.6.4.2.1.8
 "
 DEFVAL {disabled}
::= { eventLogConfigEntry 8 }

A.7.5.9 Event Log Configuration Status Parameter
eventConfigStatus OBJECT-TYPE
 SYNTAX INTEGER { other (1),
 disabled (2),
 log (3),
 error (4) }
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition>The value of this object indicates the current
 status of the configured event. Upon setting any object in
 this row of the eventLogConfigTable, the agent will
 determine if the setting is valid and will set this object
 to one of the following states:
 other indicates that the action is successfully set to
 a mode other than that defined in this standard
 disabled indicates that the action is set to disabled
 log indicates that the action is successfully set to
 the log state after passing consistency checks.
 error indicates that the requested action could not be
 implemented due to a consistency check
 <Object Identifier> 1.3.6.1.4.1.1206.4.2.6.4.2.1.9
 "
::= { eventLogConfigEntry 9 }

A.7.6 Maximum Event Log Size Parameter
maxEventLogSize OBJECT-TYPE
 SYNTAX INTEGER (1..65535)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition>The maximum, fixed number of rows that can be
 utilized within the eventLogTable.
 <Unit>Event
 <Object Identifier> 1.3.6.1.4.1.1206.4.2.6.4.3
 "
::= { globalReport 3}

A.7.7 Event Log Table
eventLogTable OBJECT-TYPE
 SYNTAX SEQUENCE OF EventLogEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "<Definition>A table containing Event History data collected.

NTCIP 1103 v03.52
Page 112

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

 A request for an object from a row that has not been
 instantiated or has been cleared shall return a noSuchName
 error.
 <TableType> dynamic
 <Object Identifier> 1.3.6.1.4.1.1206.4.2.6.4.4
 "
::= { globalReport 4 }

eventLogEntry OBJECT-TYPE
 SYNTAX EventLogEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "<Definition>This object defines an entry in the event log
 Table.
<Remark> EventLogTable was modified in NTCIP 1103 v03 to add an entry
eventLogTimeMilliseconds Integer, which did not exist in NTCIP 1103 v02.
 <Object Identifier> 1.3.6.1.4.1.1206.4.2.6.4.4.1
 "
INDEX { eventLogClass, eventLogNumber }
::= { eventLogTable 1 }

EventLogEntry ::= SEQUENCE {
 eventLogClass INTEGER,
 eventLogNumber INTEGER,
 eventLogID INTEGER,
 eventLogTime Counter,
 eventLogValue Opaque,
eventLogTimeMilliseconds INTEGER }

A.7.7.1 Event Log Class Parameter
eventLogClass OBJECT-TYPE
 SYNTAX INTEGER (1..255)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition>This object contains the class of the associated
 event as defined in the eventLogConfig Table.
 <Object Identifier> 1.3.6.1.4.1.1206.4.2.6.4.4.1.1
 "
::= { eventLogEntry 1 }

A.7.7.2 Event Log Number Parameter
eventLogNumber OBJECT-TYPE
 SYNTAX INTEGER (1..255)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition>The event number within this class for this
 event. Event numbers shall be assigned starting at 1 and
 shall increase to the value specified by the associated
 eventClassLimit for the class associated with the rows.
 Events shall maintain a chronological ordering in the table
 with the oldest event of a class occupying the row with
 eventNumber = 1, and subsequent events filling subsequent

NTCIP 1103 v03.52
Page 113

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

 rows. This ordering shall be maintained for those rows
 still remaining when events are cleared.
 <Object Identifier> 1.3.6.1.4.1.1206.4.2.6.4.4.1.2
 "
::= { eventLogEntry 2 }

A.7.7.3 Event Log ID Parameter
eventLogID OBJECT-TYPE
 SYNTAX INTEGER (1..65535)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition>This object contains the event configuration ID
 (from the eventLogConfigTable) that caused this table entry.
 It indicates the row in the eventLogConfig table responsible
 for this event entry.
 <Object Identifier> 1.3.6.1.4.1.1206.4.2.6.4.4.1.3
 "
::= { eventLogEntry 3 }

A.7.7.4 Event Log Time Parameter
eventLogTime OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition>The time that the event was detected. If the
 device supports the globalTime object, the value shall
 reflect the value of globalTime when the event occurred,
 otherwise this shall be the time in seconds since the device
 powered up. The event shall be detected and timestamped
 within one second from the event becoming true. The event
 shall be logged in the table within five seconds of the event
 being detected. These timing resolutions may be modified by a
 device profile.
 <Unit>second
 <Object Identifier> 1.3.6.1.4.1.1206.4.2.6.4.4.1.4
 "
::= { eventLogEntry 4 }

A.7.7.5 Event Log Value Parameter
eventLogValue OBJECT-TYPE
 SYNTAX Opaque
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition>The value of this object is set to the BER
 encoding of the value referenced by the eventConfigLogOID
 of the associated eventLogID when the event was logged. Its
 length is variable. The value shall not contain any padding
 characters either before or after the values.
 NOTE – Opaque objects are doubly wrapped. For SNMP
 operations, which use BER, this would be {type, length,

NTCIP 1103 v03.52
Page 114

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

 {type, length, value}}. For example, a zero-length octet
 string, would be encoded in BER as 0x44 02 04 00. For STMP
 or SFMP operations, which use OER, this would be { length,
 {type, length, value}}. For example, the same example would
 be encoded in OER as 0x02 04 00.
 <Object Identifier> 1.3.6.1.4.1.1206.4.2.6.4.4.1.5
 "
::= { eventLogEntry 5 }

A.7.7.6 Event Log Time Milliseconds Parameter
eventLogTimeMilliseconds OBJECT-TYPE
 SYNTAX INTEGER (0..999)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition>The number of milliseconds after the beginning of
 the second indicated by the value of eventLogTime at which the
 event was detected. Devices that do not support sub-second
 event time resolution shall always set this object to zero. When
 implementing eventLogTimeMilliseconds, devices require a time source
 with millisecond-level resolution, such as GPS or TIA (International
 Atomic Time).
 <Unit>milliseconds
 <Object Identifier> 1.3.6.1.4.1.1206.4.2.6.4.4.1.6
 "
::= { eventLogEntry 6 }

A.7.7.7 Total Event Log Counter Parameter
numEvents OBJECT-TYPE
 SYNTAX INTEGER (0..65535)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> This object is a counter that gets incremented
 every time an event occurs and shall initialize to zero at
 power up. The value shall roll over each time it exceeds
 the maximum of 65535.
 <Unit>Events
 <Object Identifier> 1.3.6.1.4.1.1206.4.2.6.4.7
 "
::= { globalReport 7 }

A.7.7.8 Event Log Time Latency Parameter
eventTimeLatency OBJECT-TYPE
 SYNTAX INTEGER (0..1000)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> This object indicates the maximum amount of time,
 in milliseconds, that may elapse between an event’s occurrence
 and the time reported for that event entry in the eventLogTable.
 This is a global, constant value that reports the capability
 of the device with respect to event-reporting latency. It should

NTCIP 1103 v03.52
Page 115

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

 account for all sources of latency, including both hardware and
 firmware delays. If eventTimeLatency has a value of L, this means
 that any event in the eventLogTable may actually have occurred
 up to L milliseconds prior to the time reported by the eventLogTime
 and eventLogTimeMilliseconds values associated with the event. A
 value of 0 indicates that the device reports accurate event times
 with millisecond resolution. A value of 1000 indicates that the
 device cannot accurately report sub-second event times.
 <Unit>milliseconds
 <Object Identifier> 1.3.6.1.4.1.1206.4.2.6.4.8
 "
::= { globalReport 8 }

END -- NTCIP1103v0352-Report

A.8 TMP Security MIB Header
-- Filename: 1103v0352-Security.MIB
-- Description: This MIB defines various objects related to managing and
-- monitoring the TMP security objects.
-- Specifically, these include objects related to:
-- (a) configuration of community names
-- This MIB replaces portions of TMIB-II.
--
-- MIB Revision History:
-- 08/01/96 Original standard approved
-- 01/01/98 Preliminary Release of TS 3.2 TMIB MIB formatted for 80
-- columns and no TABs
-- 01/07/98 Replaced some missed TABs with spaces
-- 07/08/98 Added Copyright Notice
-- 10/07/98 Amendment 1
-- 03/09/00 Removed all the special edits to that were done to use the
-- SMIC Compiler
-- Defined DisplayString to eliminate reference to RFC 1212
-- END is still left "Dynamic Object Data" group
-- Changed filename and updated copyright years
-- Updated the MIB to Amendment 1
-- 08/09/00 Modified header format and wording of copyright and MIB
-- 11/16/01 Added objects for sfmp and stmp statistics
-- Moved security node into this MIB from NTCIP 1201
-- Added objects to support logical names
-- Renamed the module to NTCIP1103-A-2002 from TMIB-II
-- Renamed the text name to Transportation Management
-- Protocols MIB from Transportation MIB
-- Changed STATUS of all objects to optional to reflect new
-- conformance rules being defined in NTCIP 8004
-- 06/08/04 Moved report node into this MIB from NTCIP 1201
-- 09/27/04 Changed name of file.
-- 10/11/04 Per KLV e-mails 10/08/04 updated version and
-- Changed Index on logicalNameTranslation-index
-- from (0..255) to (1..255)
-- Changed all STATUS optional to mandatory
-- 06/13/05 Updated filename.
-- 08/09/05 Added object definitions for Trap Management, Watch Block
-- Objects
-- Updated filename; re-instantiated the OIDs for the
-- 13 dynamic objects.

NTCIP 1103 v03.52
Page 116

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

-- 04/19/06 Broke the various logical groupings of objects into separate
-- MIBs to allow for separate compiling for various deployment
-- needs.
-- 12/14/07 Changed the name of this MIB only to reflect version number.
-- 11/07/16 Changed the name of this MIB only to reflect version number.
-- 12/03/16 Modified to correct issues found in compiling MIBs with SMICng
-- v2.2.07
--
-- DISTRIBUTION NOTICE
--Copyright 2016 by American Association of State Highway and
--Transportation Officials (AASHTO), Institute of Transportation Engineers
--(ITE), and National Electrical Manufacturers Association (NEMA). All
--intellectual property rights, including, but not limited to, the rights of
--reproduction in whole or in part in any form, translation into other
--languages and display are reserved by the copyright owners under the laws
of
--the United States of America, the Universal Copyright Convention, the Berne
--Convention, and the International and Pan American Copyright Conventions.
--Except for the MIB, Do not copy without written permission of either
-- AASHTO,ITE, or NEMA.
--
-- Joint NEMA, AASHTO, and ITE
-- NTCIP Management Information Base
-- DISTRIBUTION NOTICE
--
--To the extent and in the limited event these materials are distributed by
--AASHTO/ITE/NEMA in the form of a Management Information Base ("MIB"),
--AASHTO/ITE/NEMA extends the following permissions:
--
--(i) you may make and/or distribute unlimited copies (including derivative
--works) of the MIB, including copies for commercial distribution, provided
--that (a) each copy you make and/or distribute contains this Notice and (b)
--each derivative work of the MIB uses the same module name followed by "-",
--followed by your Internet Assigned Number Authority (IANA)-assigned
--enterprise number;
--(ii) use of the MIB is restricted in that the syntax field may be modified
--only to reflect a more restrictive sub-range or enumerated values;
--(iii) the description field may be modified but only to the extent that:
--(a) only those bit values or enumerated values that are supported are
--listed; and (b) the more restrictive subrange is expressed.
--
--These materials are delivered "AS IS" without any warranties as to their
use
--or performance.
--
--AASHTO/ITE/NEMA AND THEIR SUPPLIERS DO NOT WARRANT THE PERFORMANCE OR
--RESULTS YOU MAY OBTAIN BY USING THESE MATERIALS. AASHTO/ITE/NEMA AND THEIR
--SUPPLIERS MAKE NO WARRANTIES, EXPRESS OR IMPLIED, AS TO NONINFRINGEMENT OF
--THIRD PARTY RIGHTS, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE.
--IN NO EVENT WILL AASHTO, ITE OR NEMA OR THEIR SUPPLIERS BE LIABLE TO YOU OR
--ANY THIRD PARTY FOR ANY CLAIM OR FOR ANY CONSEQUENTIAL, INCIDENTAL OR
--SPECIAL DAMAGES, INCLUDING ANY LOST PROFITS OR LOST SAVINGS, ARISING FROM
--YOUR REPRODUCTION OR USE OF THESE MATERIALS, EVEN IF AN AASHTO, ITE, OR
NEMA
--REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Some
--states or jurisdictions do not allow the exclusion or limitation of
--incidental, consequential or special damages, or the exclusion of implied

NTCIP 1103 v03.52
Page 117

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

--warranties, so the above limitations may not apply to you.
--
--Use of these materials does not constitute an endorsement or affiliation by
--or between AASHTO, ITE, or NEMA and you, your company, or your products and
--services.
--
--NTCIP is a trademark of AASHTO/ITE/NEMA.
--
**

NTCIP1103v0352-Security DEFINITIONS ::= BEGIN

IMPORTS
 Gauge
 FROM RFC1155-SMI
 OBJECT-TYPE
 FROM RFC-1212
 global
 FROM NTCIP8004-2008;
-- EXPORTS EVERYTHING

security OBJECT IDENTIFIER ::= {global 5}
-- <Object Identifier> 1.3.6.1.4.1.1206.4.2.6.5
-- This node is an identifier used to group all objects related to the
-- assignment of community names and the access rights they provide.
-- These objects were previously defined in NTCIP 1201, but were moved
-- here as they relate to the protocols more than the end application.

A.8.1 Community Name Administrator Parameter
communityNameAdmin OBJECT-TYPE
 SYNTAX OCTET STRING (SIZE(8..16))
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition> This object is the community name that shall be
 used to specifically gain access to information under the
 security node. A message with this value in the community
 name field of an SNMP message has user read-write access to
 the security node objects and all other objects implemented
 in the device. The syntax is defined as an OCTET STRING
 and therefore any character can have a value of 0..255.
 <Object Identifier> 1.3.6.1.4.1.1206.4.2.6.5.1
 "
 DEFVAL { "administrator" }
::= { security 1 }

A.8.2 Maximum Community Names Parameter
communityNamesMax OBJECT-TYPE
 SYNTAX INTEGER (1..255)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> This object specifies the maximum number of
 rows that are implemented in the community name table.

NTCIP 1103 v03.52
Page 118

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

 <Object Identifier> 1.3.6.1.4.1.1206.4.2.6.5.2
 "
::= { security 2 }

A.8.3 Community Names Table
communityNameTable OBJECT-TYPE
 SYNTAX SEQUENCE OF CommunityNameTableEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "<Definition> This table defines the community names that
 can appear in the community name field of the SNMP message
 and access privileges associated with that community name.
 <TableType> static
 <Object Identifier> 1.3.6.1.4.1.1206.4.2.6.5.3
 "
::= { security 3 }

communityNameTableEntry OBJECT-TYPE
 SYNTAX CommunityNameTableEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "<Definition> This is the row index of information in the
 community name table.
 <Object Identifier> 1.3.6.1.4.1.1206.4.2.6.5.3.1
 "
 INDEX { communityNameIndex }
::= { communityNameTable 1}

CommunityNameTableEntry::=SEQUENCE
 { communityNameIndex INTEGER,
 communityNameUser OCTET STRING,
 communityNameAccessMask Gauge
 }

A.8.3.1 Community Name Index Parameter
communityNameIndex OBJECT-TYPE
 SYNTAX INTEGER (1..255)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> This object defines the row index into the
 communityNameTable. This value shall not exceed the
 communityNamesMax object value.
 <Object Identifier> 1.3.6.1.4.1.1206.4.2.6.5.3.1.1
 "
::= { communityNameTableEntry 1 }

A.8.3.2 User Community Name Parameter
communityNameUser OBJECT-TYPE
 SYNTAX OCTET STRING (SIZE(6..16))
 ACCESS read-write

NTCIP 1103 v03.52
Page 119

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

 STATUS mandatory
 DESCRIPTION
 "<Definition> This object defines a community name value that
 a security administrator can assign user read-write access
 to information (other than security) in a device. A message
 with this value in the community name field of an SNMP/SFMP
 message has user access rights as defined in the
 communityNameAccessMask. The syntax is defined as an OCTET
 STRING and therefore any character can have a value of 0..255.
 <Object Identifier> 1.3.6.1.4.1.1206.4.2.6.5.3.1.2
 "
 DEFVAL { "public" }
::= { communityNameTableEntry 2 }

A.8.3.3 User Community Name Mask Parameter
communityNameAccessMask OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition> This object defines a 32 bit mask that can be
 used to associate 'write access' with a community name. A
 value of 0x00 00 00 00 grants the community name user
 read-only access and overrides any individual object's
 read-write access clause. A value of 0xFF FF FF FF grants
 the community name user read-write access and an individual
 object's read-write access clause applies. Values other
 than 0x00 00 00 00 and 0xFF FF FF FF are implementation
 specific and may limit viewing and/or accessing the
 information in a device.
 <Object Identifier> 1.3.6.1.4.1.1206.4.2.6.5.3.1.3
 "
 DEFVAL { 4294967295 }
::= { communityNameTableEntry 3 }

END -- NTCIP1103v0352-Security

A.9 TMP Trap MIB Header
-- Filename: 1103v0352-Traps.MIB
-- Description: This MIB defines various objects related to managing and
-- monitoring the TMP traps.
-- Specifically, these include objects related to:
-- (a) configuration of block and watch objects,
-- (b) configuration and monitoring of traps
-- This MIB replaces portions of TMIB-II.
--
-- MIB Revision History:
-- 02/07/08 Original standard approved
-- 11/07/16 Changed the name of this MIB only to reflect the version
number.
-- 12/03/16 Modified to correct issues found in compiling MIBs with SMICng
-- v2.2.07
--
-- DISTRIBUTION NOTICE

NTCIP 1103 v03.52
Page 120

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

--Copyright 2016 by American Association of State Highway and
--Transportation Officials (AASHTO), Institute of Transportation Engineers
--(ITE), and National Electrical Manufacturers Association (NEMA). All
--intellectual property rights, including, but not limited to, the rights of
--reproduction in whole or in part in any form, translation into other
--languages and display are reserved by the copyright owners under the laws
of
--the United States of America, the Universal Copyright Convention, the Berne
--Convention, and the International and Pan American Copyright Conventions.
--Except for the MIB, Do not copy without written permission of either
AASHTO,
--ITE, or NEMA.
--
-- Joint NEMA, AASHTO, and ITE
-- NTCIP Management Information Base
-- DISTRIBUTION NOTICE
--
--To the extent and in the limited event these materials are distributed by
--AASHTO/ITE/NEMA in the form of a Management Information Base ("MIB"),
--AASHTO/ITE/NEMA extends the following permissions:
--
--(i) you may make and/or distribute unlimited copies (including derivative
--works) of the MIB, including copies for commercial distribution, provided
--that (a) each copy you make and/or distribute contains this Notice and (b)
--each derivative work of the MIB uses the same module name followed by "-",
--followed by your Internet Assigned Number Authority (IANA)-assigned
--enterprise number;
--(ii) use of the MIB is restricted in that the syntax field may be modified
--only to reflect a more restrictive sub-range or enumerated values;
--(iii) the description field may be modified but only to the extent that:
--(a) only those bit values or enumerated values that are supported are
--listed; and (b) the more restrictive subrange is expressed.
--
--These materials are delivered "AS IS" without any warranties as to their
use
--or performance.
--
--AASHTO/ITE/NEMA AND THEIR SUPPLIERS DO NOT WARRANT THE PERFORMANCE OR
--RESULTS YOU MAY OBTAIN BY USING THESE MATERIALS. AASHTO/ITE/NEMA AND THEIR
--SUPPLIERS MAKE NO WARRANTIES, EXPRESS OR IMPLIED, AS TO NONINFRINGEMENT OF
--THIRD PARTY RIGHTS, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE.
--IN NO EVENT WILL AASHTO, ITE OR NEMA OR THEIR SUPPLIERS BE LIABLE TO YOU OR
--ANY THIRD PARTY FOR ANY CLAIM OR FOR ANY CONSEQUENTIAL, INCIDENTAL OR
--SPECIAL DAMAGES, INCLUDING ANY LOST PROFITS OR LOST SAVINGS, ARISING FROM
--YOUR REPRODUCTION OR USE OF THESE MATERIALS, EVEN IF AN AASHTO, ITE, OR
NEMA
--REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Some
--states or jurisdictions do not allow the exclusion or limitation of
--incidental, consequential or special damages, or the exclusion of implied
--warranties, so the above limitations may not apply to you.
--
--Use of these materials does not constitute an endorsement or affiliation by
--or between AASHTO, ITE, or NEMA and you, your company, or your products and
--services.
--
--NTCIP is a trademark of AASHTO/ITE/NEMA.
--

NTCIP 1103 v03.52
Page 121

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

**
NTCIP1103v0352-Traps DEFINITIONS ::= BEGIN

IMPORTS
 TRAP-TYPE
 FROM RFC-1215
 Counter, NetworkAddress, null
 FROM RFC1155-SMI
 OBJECT-TYPE
 FROM RFC-1212
 DisplayString
 FROM RFC1213-MIB
 application, ntcipTraps, OerString, RowStatusStatic
 FROM NTCIP8004-2008
 eventConfigID
 FROM NTCIP1103v0352-Report;

-- EXPORTS EVERYTHING

A.9.1 Watch Blocks
-- Watch Blocks are OER encoded configurable read only blocks
-- intended to be utilized for device status monitoring in the
-- eventConfigCompareOID in the eventConfigTable.
-- The intent is to be able to configure events to monitor a collection
-- of NTCIP objects at the same time, and trigger the logging and/or
-- transmission of a trap message.

-- Note that when a watch block is used for the eventConfigCompareOID,
-- the eventConfigMode object is restricted to onChange (2)
-- Any entry with an attempt to use any other mode shall be
-- ignored at run time. Because there is no restriction on the order
-- in which the entries are created, specifying a watch block that
-- has not been configured does not generate an error. Likewise
-- care should be taken to ensure that the configuration of the event
-- table and the watch blocks (as well as the report blocks) are
-- consistent and correct.

watchBlocks OBJECT IDENTIFIER ::= { application 6 }
-- <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.6

A.9.1.1 Maximum Watch Objects

maxWatchObjects OBJECT-TYPE
 SYNTAX INTEGER (150..8192)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition>The number of rows that exist in the
 watchObjectDefinitionTable for this device.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.6.1
 "
::= { watchBlocks 1 }

NTCIP 1103 v03.52
Page 122

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

A.9.1.2 Maximum Watch Blocks

maxWatchBlocks OBJECT-TYPE
SYNTAX INTEGER (1..50)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition>The number of rows that exist in the
 watchBlockTable for this device.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.6.2
 "
::= { watchBlocks 2 }

A.9.1.3 Watch Object Definition Table
watchObjectDefinitionTable OBJECT-TYPE
 SYNTAX SEQUENCE OF WatchObjectDefinitionEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "<Definition>A table containing Watch Object
 definition information. The number of rows in
 this table is equal to the maxWatchObjects object.
 <TableType> static
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.6.3
 "
::= { watchBlocks 3 }

watchObjectDefinitionEntry OBJECT-TYPE
 SYNTAX WatchObjectDefinitionEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "<Definition>This object defines an entry in the
 Watch Object Definition table.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.6.3.1
 "
 INDEX { watchID }
::= { watchObjectDefinitionTable 1 }

WatchObjectDefinitionEntry ::= SEQUENCE {
 watchID INTEGER,
 watchStatus RowStatusStatic,
 watchBlock INTEGER,
 watchOID OBJECT IDENTIFIER }

A.9.1.3.1 Watch Identification Parameter
watchID OBJECT-TYPE
 SYNTAX INTEGER (1..255)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition>This object contains the row number
 which is used to identify the object associated
 with this row in the watchObjectDefinitionTable.
 This value shall not exceed the value indicated

NTCIP 1103 v03.52
Page 123

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

 by the maxWatchObjects object.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.6.3.1.1
 "
::= { watchObjectDefinitionEntry 1 }

A.9.1.3.2 Watch Status Parameter
watchStatus OBJECT-TYPE
 SYNTAX RowStatusStatic
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition>The value of this object indicates the
 current status of the this row in the table.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.6.3.1.2
 "
 DEFVAL { invalid }
::= { watchObjectDefinitionEntry 2 }

A.9.1.3.3 Watch Block Parameter
watchBlock OBJECT-TYPE
 SYNTAX INTEGER (1..255)
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition>This object contains the block number
 to assign to the watch object associated with
 this row in the watch object definition table.
 This value shall not exceed the value indicated by
 the maxWatchBlocks object.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.6.3.1.3
 "
 DEFVAL { 1 }
::= { watchObjectDefinitionEntry 3 }

A.9.1.3.4 Watch Object Identifier Parameter
watchOID OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition>This object contains the object
 identifier of the object to watch.
 The following objects shall NOT be assigned to any watchOID:
 All objects under the security node (Annex B)
 { nema transportation devices global security }
 All objects under the dynObjMgmt node (Annex A)
 {nema transportation protocols dynObjMgmt}
 All objects under the chap node (Annex B of NTCIP 2301)
 { nema transportation protocols layers chap }
 Any objects so identified by various device standards
 Any objects whose SYNTAX does NOT resolve to a ranged or
 unranged INTEGER.
 Any other report object or watch object

NTCIP 1103 v03.52
Page 124

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

 Any objects that the agent/device does not support.
 An agent should return a badValue error if it receives a
 SET command for any of the above.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.6.3.1.4
 "
 DEFVAL { null }
::= { watchObjectDefinitionEntry 4 }

A.9.1.4 Watch Block Table
watchBlockTable OBJECT-TYPE
 SYNTAX SEQUENCE OF WatchBlockEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "<Definition> A table containing the Watch Blocks
 Defined in the Watch Object Definition table. The
 number of rows in this table is equal to the value
 of the maxWatchBlocks object.
 <TableType> static
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.6.4
 "
::= { watchBlocks 4 }

watchBlockEntry OBJECT-TYPE
 SYNTAX WatchBlockEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "<Definition>This defines a row in the
 watchBlockTable.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.6.4.1
 "
 INDEX { watchBlockNumber }
::= { watchBlockTable 1 }

WatchBlockEntry ::= SEQUENCE {
 watchBlockNumber INTEGER,
 watchBlockStatus RowStatusStatic,
 watchBlockDescription OCTET STRING,
 watchBlockValue OerString }

A.9.1.4.1 Watch Block Number
watchBlockNumber OBJECT-TYPE
 SYNTAX INTEGER (1..255)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition>The block number for this row in the table.
 This value shall not exceed the value indicated by the
 maxWatchBlocks object.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.6.4.1.1
 "
::= { watchBlockEntry 1 }

NTCIP 1103 v03.52
Page 125

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

A.9.1.4.2 Watch Block Status
watchBlockStatus OBJECT-TYPE
 SYNTAX RowStatusStatic
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition>The value of this object indicates the
 current status of this row in the table.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.6.4.1.2
 "
 DEFVAL { invalid }
::= { watchBlockEntry 2 }

A.9.1.4.3 Watch Block Description
watchBlockDescription OBJECT-TYPE
 SYNTAX OCTET STRING (SIZE(0..20))
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition> This object may be used to define a
 description of this watch block.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.6.4.1.3
 "
 DEFVAL { "" }
::= { watchBlockEntry 3 }

A.9.1.4.4 Watch Block Value
watchBlockValue OBJECT-TYPE
 SYNTAX OerString
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> An OER encoded string of all object values
 defined in watchObjectDefinitionTable, pointed at by
 watchOID (in watchID order) where the watchBlock IS
 watchBlockNumber AND the watchStatus IS available.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.6.4.1.4
 "
 DEFVAL { "" }
::= { watchBlockEntry 4 }

A.9.2 Report Blocks
-- Report blocks are OER encoded configurable read only blocks
-- intended to be utilized for device status and other parameters as
-- the eventConfigLogOID in the eventConfigTable.
-- Like the watch blocks, they can only be validated at run-time.
-- Improperly configured report blocks shall be ignored.

reportBlocks OBJECT IDENTIFIER ::= { application 7 }
-- <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.7

NTCIP 1103 v03.52
Page 126

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

A.9.2.1 Maximum Report Objects
maxReportObjects OBJECT-TYPE
SYNTAX INTEGER (150..8192)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition>The number of rows that exist in the
 reportObjectDefinitionTable for this device.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.7.1
 "
::= { reportBlocks 1 }

A.9.2.2 Maximum Report Blocks
maxReportBlocks OBJECT-TYPE
SYNTAX INTEGER (1..50)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition>The number of rows that exist in the
 reportBlockTable for this device.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.7.2
 "
::= { reportBlocks 2 }

A.9.2.3 Report Object Configuration Table
reportObjectDefinitionTable OBJECT-TYPE
 SYNTAX SEQUENCE OF ReportObjectDefinitionEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "<Definition>A table containing Report Object
 definition information. The number of rows in
 this table is equal to the maxReportObjects object.
 <TableType> static
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.7.3
 "
::= { reportBlocks 3 }

reportObjectDefinitionEntry OBJECT-TYPE
 SYNTAX ReportObjectDefinitionEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "<Definition>This object defines an entry in the
 Report Object Definition table.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.7.3.1
 "
 INDEX { reportID }
::= { reportObjectDefinitionTable 1 }

ReportObjectDefinitionEntry ::= SEQUENCE {
 reportID INTEGER,
 reportStatus RowStatusStatic,
 reportBlock INTEGER,

NTCIP 1103 v03.52
Page 127

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

 reportOID OBJECT IDENTIFIER }

A.9.2.3.1 Report Identification Parameter
reportID OBJECT-TYPE
 SYNTAX INTEGER (1..255)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition>This object contains the row number
 which is used to identify the objects associated
 with this row in the reportObjectDefinitionTable.
 This value shall not exceed the value indicated
 by the maxReportObjects object.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.7.3.1.1
 "
::= { reportObjectDefinitionEntry 1 }

A.9.2.3.2 Report Status Parameter
reportStatus OBJECT-TYPE
 SYNTAX RowStatusStatic
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition>The value of this object indicates the
 current status of the this row in the table.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.7.3.1.2
 "
 DEFVAL { invalid }
::= { reportObjectDefinitionEntry 2 }

A.9.2.3.3 Report Block Parameter
reportBlock OBJECT-TYPE
 SYNTAX INTEGER (1..255)
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition>This object contains the block number
 to assign to the log object associated with
 this row in the reportObjectDefinitionTable.
 This value shall not exceed the value indicated by
 the maxReportBlocks object.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.7.3.1.3
 "
 DEFVAL { 1 }
::= { reportObjectDefinitionEntry 3 }

A.9.2.3.4 Report Object Identifier Parameter
reportOID OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition>This object contains the object

NTCIP 1103 v03.52
Page 128

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

 identifier of the object to log.
 The following objects shall NOT be assigned to any reportOID:
 All objects under the security node (Annex B)
 { nema transportation devices global security }
 All objects under the dynObjMgmt node (Annex A)
 {nema transportation protocols dynObjMgmt}
 All objects under the chap node (Annex B of NTCIP 2301)
 { nema transportation protocols layers chap }
 Any other report object or watch object
 Any objects so identified by various device standards
 Any objects that the agent/device does not support.
 An agent should return a badValue error if it receives a
 SET command for any of the above.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.7.3.1.4
 "
 DEFVAL { null }
::= { reportObjectDefinitionEntry 4 }

A.9.2.4 Report Block Table
reportBlockTable OBJECT-TYPE
 SYNTAX SEQUENCE OF ReportBlockEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "<Definition> A table containing the Report blocks
 Defined in the reportObjectDefinitionTable. The
 number of rows in this table is equal to the value
 of the maxReportBlocks object.
 <TableType> static
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.7.4
 "
::= { reportBlocks 4 }

reportBlockEntry OBJECT-TYPE
 SYNTAX ReportBlockEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "<Definition>This defines a row in the
 reportBlockTable.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.7.4.1
 "
 INDEX { reportBlockNumber }
::= { reportBlockTable 1 }

ReportBlockEntry ::= SEQUENCE {
 reportBlockNumber INTEGER,
 reportBlockStatus RowStatusStatic,
 reportBlockDescription OCTET STRING,
 reportBlockValue OerString }

A.9.2.4.1 Report block Number
reportBlockNumber OBJECT-TYPE
 SYNTAX INTEGER (1..255)
 ACCESS read-only

NTCIP 1103 v03.52
Page 129

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

 STATUS mandatory
 DESCRIPTION
 "<Definition>The block number for this row in the table.
 This value shall not exceed the value indicated by the
 maxReportBlocks object.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.7.4.1.1
 "
::= { reportBlockEntry 1 }

A.9.2.4.2 Report Block Status
reportBlockStatus OBJECT-TYPE
 SYNTAX RowStatusStatic
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition>The value of this object indicates the
 current status of this row in the table.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.7.4.1.2
 "
 DEFVAL { invalid }
::= { reportBlockEntry 2 }

A.9.2.4.3 Report Block Description
reportBlockDescription OBJECT-TYPE
 SYNTAX OCTET STRING (SIZE(0..20))
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition> This object may be used to define a
 description of this report block.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.7.4.1.3
 "
 DEFVAL { "" }
::= { reportBlockEntry 3 }

A.9.2.4.4 Report Block Value
reportBlockValue OBJECT-TYPE
 SYNTAX OerString
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> An OER encoded string of all object values
 defined in reportObjectDefinitionTable, pointed at by
 reportOID (in reportID order) where the reportBlock IS
 reportBlockNumber AND the reportStatus Is available.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.7.4.1.4
 "
 DEFVAL { "" }
::= { reportBlockEntry 4 }

A.9.3 Trap Management
trapMgmt OBJECT IDENTIFIER ::= {ntcipTraps 1}
-- <Object Identifier> 1.3.6.1.4.1.1206.4.1.4.1

NTCIP 1103 v03.52
Page 130

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

A.9.3.1 Trap Control
trapControl OBJECT-TYPE
 SYNTAX INTEGER (0..1)
 ACCESS read-write
 STATUS optional
 DESCRIPTION
 "<Definition> The possible values are:
 0 - disable NTCIP traps
 1 - enable NTCIP traps
 The other values are reserved.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.4.1.1
 "
 DEFVAL {0}
 ::= { trapMgmt 1 }

A.9.3.2 Trap Data
trapData OBJECT-TYPE
 SYNTAX OerString
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> It contains an octet string (event notification) with
 octet trap sequence number (trapMgmtSeqNum)and octet trap manager
 index (trapMgmtManagerIndex), followed by one or more OER encoded
 sequences of eventID (eventConfigID), eventTime (globalTime of
 the occurrence of the event), eventLogTimeMilliseconds (fractional
 second of the occurrence of the event), and reported data (as
 pointed to by eventConfigLogOID).
 For aggregated trap messages (ackTrapChain and noackTrapChain) the
 trapData contains the octet trap sequence number (trapMgmtSeqNum)
 and octet trap manager index (trapMgmtManagerIndex),
 followed by from 1 to trapMaxAggregationSize triplets.
 The sequence to which OER encoding is applied is formally defined by
 the TrapDataStructure (see Section 6.4.1).
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.4.1.2
 "
 ::= { trapMgmt 2 }

A.9.3.3 Trap Management Maximum Entries
trapMgmtMaxEntries OBJECT-TYPE
 SYNTAX INTEGER (1..255)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The maximum number of entries in the trapMgmtTable.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.4.1.3
 "
 ::= { trapMgmt 3 }

A.9.3.4 Trap Maximum Aggregation Events
trapMaxAggregationEvents OBJECT-TYPE

NTCIP 1103 v03.52
Page 131

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

 SYNTAX INTEGER (1..255)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> This object defines the maximum number of trap-events
 which can be aggregated.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.4.1.4
 "
 ::= { trapMgmt 4 }

A.9.3.5 Trap Maximum Aggregation Size
trapMaxAggregationSize OBJECT-TYPE
 SYNTAX INTEGER (1..1023)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> This object defines the maximum size (in bytes) of the
 aggregation chains that can be created during the aggregation process.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.4.1.5
 "
 ::= { trapMgmt 5 }

A.9.3.6 Trap Management Table
trapMgmtTable OBJECT-TYPE
 SYNTAX SEQUENCE OF TrapMgmtEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "<Definition> The table contains the list of management stations and
 their parameters where the agent traps are to be sent.
 <TableType> static
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.4.1.6
 "
 ::= { trapMgmt 6 }

trapMgmtEntry OBJECT-TYPE
 SYNTAX TrapMgmtEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "<Definition> This defines a row in the trapMgmtTable.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.4.1.6.1
 "
 INDEX { trapMgmtManagerIndex }
 ::= { trapMgmtTable 1 }

TrapMgmtEntry ::=
 SEQUENCE {
 trapMgmtManagerIndex INTEGER,
 trapMgmtManagerPointer INTEGER,
 trapMgmtCommunityNamePointer INTEGER,
 trapMgmtApplicationProtocol INTEGER,
 trapMgmtTransportProtocol INTEGER,
 trapMgmtPortNum INTEGER,
 trapMgmtMaxRetries INTEGER,

NTCIP 1103 v03.52
Page 132

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

 trapMgmtRepeatInterval INTEGER,
 trapMgmtDelta INTEGER,
 trapMgmtQueueDepth INTEGER,
 trapMgmtLinkStateStatus INTEGER,
 trapMgmtAntiStreamRate INTEGER,
 trapMgmtErrStatus INTEGER,
 trapMgmtLostTraps Counter,
 trapMgmtRowStatus RowStatusStatic,
 trapMgmtSeqNum INTEGER,
 trapMgmtSeqNumAck INTEGER
 }

A.9.3.6.1 Trap Manager Index
trapMgmtManagerIndex OBJECT-TYPE
 SYNTAX INTEGER (1..255)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> This object provides the index into the
 trapMgmtTable.
 This value shall not exceed the trapMgmtMaxEntries
 object value.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.4.1.6.1.1
 "
 ::= { trapMgmtEntry 1 }

A.9.3.6.2 Trap Logical Name Translation Entry Pointer
trapMgmtManagerPointer OBJECT-TYPE
 SYNTAX INTEGER (1..255)
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition> For UDP/IP stacks (trapMgmtTransportProtocol = 3), this
 value is equal to the logicalNameTranslationIndex for the logical name
 translation table entry where logicalNameTranslationName holds the
 logical name and logicalNameTranslationNetworkAddress holds the IP
 address of the destination management station for ntcip traps.
 Otherwise it is not used.
 This value shall not exceed the logicalNameTranslationTableMaxEntries
 object value.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.4.1.6.1.2
 "
 DEFVAL {1 }
 ::= { trapMgmtEntry 2 }

A.9.3.6.3 Trap Community Name Entry Pointer
trapMgmtCommunityNamePointer OBJECT-TYPE
 SYNTAX INTEGER (1..255)
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition> This value is equal to the communityNameIndex for the
 community name table entry where communityNameUser holds the community
 name for ntcip traps sent to the destination management station.

NTCIP 1103 v03.52
Page 133

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

 This value shall not exceed communityNamesMax object value.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.4.1.6.1.3
 "
 DEFVAL { 1 }
 ::= { trapMgmtEntry 3 }

A.9.3.6.4 Trap Application Layer Protocol
trapMgmtApplicationProtocol OBJECT-TYPE
 SYNTAX INTEGER {
 other (1),
 snmp (2),
 sfmp (3)
 }
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition> This object identifies the application layer protocol to
 use for TMP (Transportation Management Protocol) traps. The possible
 values are:
 1 - other : not defined in this standard
 2 - snmp : use SNMPv1 Trap
 3 - sfmp : use SFMP Trap
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.4.1.6.1.4
 "
 DEFVAL { snmp }
 ::= { trapMgmtEntry 4 }

A.9.3.6.5 Trap Transport Layer Protocol
trapMgmtTransportProtocol OBJECT-TYPE
 SYNTAX INTEGER {
 other (1),
 t2 (2),
 udp (3)
 }
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition> This object identifies the transport profile to use for
 TMP traps. The possible values are:
 1 - other : not defined in standard
 2 - t2 : use T2 encapsulation to omit the port number
 3 - udp : use UDP/IP stack
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.4.1.6.1.5"
 DEFVAL { udp }
 ::= { trapMgmtEntry 5 }

A.9.3.6.6 Trap Port Number
trapMgmtPortNum OBJECT-TYPE
 SYNTAX INTEGER (0..65535)
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition> Port of the destination management station
 (e.g. 162 - default SNMP Trap port).

NTCIP 1103 v03.52
Page 134

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

 <Object Identifier> 1.3.6.1.4.1.1206.4.1.4.1.6.1.6
 "
 DEFVAL {162}
 ::= { trapMgmtEntry 6 }

A.9.3.6.7 Trap Maximum Retransmission Retries
trapMgmtMaxRetries OBJECT-TYPE
 SYNTAX INTEGER (0..255)
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition> The maximum number of times an agent attempts to
 retransmit a trap before transitioning to the error state.
 Note: A value of one indicates that the agent attempts a
 maximum of two transmissions.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.4.1.6.1.7
 "
 DEFVAL {0}
 ::= { trapMgmtEntry 7 }

A.9.3.6.8 Trap Repeat Interval
trapMgmtRepeatInterval OBJECT-TYPE
 SYNTAX INTEGER (0..255)
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition> The minimum number of seconds to wait before
 retransmitting a trap that has not been acknowledged.
 A value of zero (0) indicates an immediate retransmission of the
 trap.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.4.1.6.1.8
 "
 DEFVAL {60}
 ::= { trapMgmtEntry 8 }

A.9.3.6.9 Trap Repeat Interval Timeout Delta
trapMgmtDelta OBJECT-TYPE
 SYNTAX INTEGER (0..255)
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition> A number of seconds to be added to the total timeout for
 the next trap retransmission.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.4.1.6.1.9
 "
 DEFVAL {60}
 ::= { trapMgmtEntry 9 }

A.9.3.6.10 Trap Maximum Number of Queued Traps
trapMgmtQueueDepth OBJECT-TYPE
 SYNTAX INTEGER (0..50)
 ACCESS read-write
 STATUS mandatory

NTCIP 1103 v03.52
Page 135

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

 DESCRIPTION
 "<Definition> The maximum number of traps that can be queued for the
 Management station. Setting this value to zero flushes and disables
 the queue, and prevents any queueable traps from being sent.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.4.1.6.1.10
 "
 DEFVAL {1}
 ::= { trapMgmtEntry 10 }

A.9.3.6.11 Trap State of Communications Link
trapMgmtLinkStateStatus OBJECT-TYPE
 SYNTAX INTEGER {
 other (1),
 ready (2),
 pending (3),
 error (4)
 }
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> This object contains the current link state of the
manager
 registered in this row. The states are defined as follows:
 other (1) – not defined in this standard;
 ready (2) - any trap can be sent to the manager (initial
 condition after power-on); if an ACK trap
 appears in the queue the agent sends the trap
 message to the manager, starts timer and
 internal retry counter, and sets the state to
 pending;
 pending (3) - waiting for the manager to acknowledge the last
 ACK trap; NOACK and forced mode traps can
 be transmitted to the manager; if after all
 retries and timeouts the management station did
 not acknowledge an ACK trap message the agent
 sets the state to error
 error (4) – an ACK trap has not been acknowledged
 within the specified number of retries for this
 management station. Only force mode traps are
 transmitted to the management station until
 the link state is reset to ready.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.4.1.6.1.11
 "
 REFERENCE
 "NTCIP 1103 v03 Section 6.3"
 ::= { trapMgmtEntry 11 }

A.9.3.6.12 Trap Antistreaming Rate
trapMgmtAntiStreamRate OBJECT-TYPE
 SYNTAX INTEGER (1..255)
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition> The maximum number of traps that can be generated on
 a specific link (trap channel) in one minute. The

NTCIP 1103 v03.52
Page 140

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

 reset when the trap chain is sent. The aggregation
 timers for each entry in the trap chain time concurrently and the
 first one to expire causes the entire trap chain to be sent to the
 management station.
 (Note that this is larger than 8 bits to allow aggregation times
 to support 5 minutes and longer).
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.4.1.7.1.3
 "
 REFERENCE
 "NTCIP 1103 v03 Section 6.2.4"
 DEFVAL {0}
 ::= { trapEntry 3 }

A.9.3.7.4 Trap Counter
trapCounter OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> this keeps track of the number of eventConfigID traps
 sent to the trap channel identified by the trapMgmtManagerIndex since
 the last (power-on) reset. It is incremented with the transmission
 or queuing (or addition to a trap chain) of each trap. By reading
 this parameter, a management station can verify the number of traps
 triggered for transmission or queuing by this event for this trap
 channel.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.4.1.7.1.4
 "
 ::= {trapEntry 4 }

A.9.4 NTCIP Trap Data
ntcipTrapData OBJECT IDENTIFIER ::= {ntcipTraps 2}
-- <Object Identifier> 1.3.6.1.4.1.1206.4.1.4.2

A.9.4.1 Event Trap
trapEvent TRAP-TYPE
 ENTERPRISE ntcipTrapData
 VARIABLES { trapData }
 DESCRIPTION
 "<Definition> Indicates that one of the user-defined event specified in
 the eventLogConfigTable has occurred. The generation of the trap is
 governed by the rules defined in SNMP, Section 6 above, and the
 trapMgmtTable.
 The instances of the variables associates with this trap shall indicate
 those associated with the event notification being sent.
 "
 ::= 1

A.9.5 Clear Event Data
eventClearObjects OBJECT IDENTIFIER ::= { application 8 }
-- <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.8

-- This node is an identifier used to group all objects for

NTCIP 1103 v03.52
Page 141

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

-- support of clearing the report node (events) and report objects.

A.9.5.1 Clear Event Class
eventClearClasses OBJECT-TYPE
 SYNTAX INTEGER (0..255)
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition>This object identifies the event class to be cleared from the
 report node. A SET of n = 5..255, n <= maxEventClasses shall cause all
 information related to that class to be cleared from the report node.
 This includes clearing the event class table of eventClassNumber=n
 data, clearing all event configurations related to eventClassNumber=n,
 and clearing all event log entries for class n. A SET of 0 shall clear
 all classes as described. That is, completely clear the report node
 with the exception that the preconfigured event classes, their
 configurations, and their preconfigured event log entries are
 not cleared. A GET shall always return zero (0).

 If a device standard, Classes 1..4 are preconfigured and cannot be
cleared. An attempt to clear Classes 1..4 shall return badValue. A value
of n > maxEventClasses
 or > 255 if maxEventClasses is not configured, shall also return
 badValue.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.8.1
 "
::= { eventClearObjects 1 }

A.9.5.2 Clear Event Configuration
eventClearConfiguration OBJECT-TYPE
 SYNTAX INTEGER (0..65535)
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition>This object contains the event configuration(s) to clear
 from the report node. A SET of n = 1..65535, n <= maxEventLogConfigs
 shall cause all information related to that configuration to be cleared
 from the report node. This includes clearing the event configuration
 table for all eventConfigID = n data, and clearing all event log
 entries for eventConfigID = n. A SET of 0 shall clear all
 configurations within the device as described (i.e. completely
 clear the report node with the exception that the eventClassTable is
 and preconfigured event configuration are not altered). A GET shall
 always return zero (0).

 Note: This object cannot be included in a block object. The device
 shall respond with badValue if the eventLogConfig = n does not exist.
 The device shall respond with badValue if an attempt to clear a
 preconfigured event log entries is made.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.8.2
 "
::= { eventClearObjects 2 }

NTCIP 1103 v03.52
Page 142

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

A.9.5.3 Clear Event Log Table
eventClearLog OBJECT-TYPE
 SYNTAX INTEGER (0..1)
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition>This object commands the device to clear the eventLogTable.
 A SET of zero has no effect on the eventLogTable. A SET = 1 shall cause
 all event log entries to be deleted from the eventLogTable.
 Upon performing the action requested, the device shall
 SET this object to zero (0). A GET shall always return zero (0).
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.8.3
 "
::= { eventClearObjects 3 }

A.9.5.4 Clear Report Objects
clearReportObjects OBJECT-TYPE
 SYNTAX INTEGER (0..1)
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition>This object commands the device to effectively clear the
 report object and report block tables. A SET of zero has no effect on
 the tables. A SET = 1 shall set the row status object of all rows
 within both reportObjectDefinitionTable and reportBlockTable
 to “invalid” effectively clearing the tables in one action. Upon
 performing the action requested, the device shall SET this object to
 zero (0). A GET shall always return zero (0).
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.8.4
 "
::= { eventClearObjects 4 }

A.9.5.5 Clear Report Block Table
clearReportBlockTable OBJECT-TYPE
 SYNTAX INTEGER (0..1)
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition>This object commands the device to effectively clear the
 report block table. A SET of zero (0) has no effect on the tables. A
 SET of one (1) shall set the row status object of all rows within
 reportBlockTable to “invalid” effectively clearing the table in one
 action. Upon performing the action requested, the device shall SET
 this object to zero (0). A GET shall always return zero (0).
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.8.5
 "
::= { eventClearObjects 5 }

A.9.5.6 Clear Watch Objects
clearWatchObjects OBJECT-TYPE
 SYNTAX INTEGER (0..1)
 ACCESS read-write
 STATUS mandatory

NTCIP 1103 v03.52
Page 143

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

 DESCRIPTION
 "<Definition>This object commands the device to effectively clear the
 watch object and watch block tables. A SET of zero has no effect on
 the tables. A SET = 1 shall set the row status object of all rows
 within both watchObjectDefinitionTable and watchBlockTable
 to “invalid” effectively clearing the tables in one action. Upon
 performing the action requested, the device shall SET this object to
 zero (0). A GET shall always return zero (0).
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.8.6
 "
::= { eventClearObjects 6 }

A.9.5.7 Clear Watch Block Table
clearWatchBlockTable OBJECT-TYPE
 SYNTAX INTEGER (0..1)
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition>This object commands the device to effectively clear the
 watch block table. A SET of zero (0) has no effect on the tables. A
 SET of one (1) shall set the row status object of all rows within
 watchBlockTable to “invalid” effectively clearing the table in one
 action. Upon performing the action requested, the device shall SET
 this object to zero (0). A GET shall always return zero (0).
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.8.7
 "
::= { eventClearObjects 7 }

A.9.5.8 Clear Trap Management Table
clearTrapMgmtTable OBJECT-TYPE
 SYNTAX INTEGER (0..1)
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition>This object commands the device to effectively clear the
 trap management table and, as a consequence, the trap table. A SET
 of zero (0) has no effect on the tables. A SET of one (1) shall set
 the row status object of all rows within trapMgmtTable to “invalid”
 effectively clearing the table in one action. Upon performing the
 action requested, the device shall SET this object to zero (0). A
 GET shall always return zero (0). Note: Because the trapMgmtIndex
 is also an index of trapTable, this action also effectively
 removes all rows of the trapTable.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.8.8
 "
::= { eventClearObjects 8 }

END -- NTCIP1103v0352-Traps

A.10 Recording Mechanisms MIB
-- Filename: 1103v0352-RechMech.MIB
-- Description: This MIB defines various objects related to managing and

NTCIP 1103 v03.52
Page 144

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

-- monitoring the recording mechanism objects.
-- Specifically, these include objects related to:
-- (a) configuration of the recording mechanism
-- This MIB replaces portions of TMIB-II.
--
-- MIB Revision History:
-- 11/07/16 Original standard approved
-- 12/03/16 Modified to correct issues found in compiling MIBs with SMICng
-- v2.2.07
--
-- DISTRIBUTION NOTICE
--Copyright 2016 by the American Association of State Highway and
--Transportation Officials (AASHTO), the Institute of Transportation Engineers
--(ITE), and the National Electrical Manufacturers Association (NEMA). All
--intellectual property rights, including, but not limited to, the rights of
--reproduction in whole or in part in any form, translation into other
--languages and display are reserved by the copyright owners under the laws of
--the United States of America, the Universal Copyright Convention, the Berne
--Convention, and the International and Pan American Copyright Conventions.
--Except for the MIB, Do not copy without written permission of either AASHTO,
--ITE, or NEMA.
--
-- Joint NEMA, AASHTO, and ITE
-- NTCIP Management Information Base
-- DISTRIBUTION NOTICE
--
--To the extent and in the limited event these materials are distributed by
--AASHTO/ITE/NEMA in the form of a Management Information Base ("MIB"),
--AASHTO/ITE/NEMA extends the following permissions:
--
--(i) you may make and/or distribute unlimited copies (including derivative
--works) of the MIB, including copies for commercial distribution, provided
--that (a) each copy you make and/or distribute contains this Notice and (b)
--each derivative work of the MIB uses the same module name followed by "-",
--followed by your Internet Assigned Number Authority (IANA)-assigned
--enterprise number;
--(ii) use of the MIB is restricted in that the syntax field may be modified
--only to reflect a more restrictive sub-range or enumerated values;
--(iii) the description field may be modified but only to the extent that:
--(a) only those bit values or enumerated values that are supported are
--listed; and (b) the more restrictive subrange is expressed.
--
--These materials are delivered "AS IS" without any warranties as to their use
--or performance.
--
--AASHTO/ITE/NEMA AND THEIR SUPPLIERS DO NOT WARRANT THE PERFORMANCE OR
--RESULTS YOU MAY OBTAIN BY USING THESE MATERIALS. AASHTO/ITE/NEMA AND THEIR
--SUPPLIERS MAKE NO WARRANTIES, EXPRESS OR IMPLIED, AS TO NONINFRINGEMENT OF
--THIRD PARTY RIGHTS, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE.
--IN NO EVENT WILL AASHTO, ITE OR NEMA OR THEIR SUPPLIERS BE LIABLE TO YOU OR
--ANY THIRD PARTY FOR ANY CLAIM OR FOR ANY CONSEQUENTIAL, INCIDENTAL OR
--SPECIAL DAMAGES, INCLUDING ANY LOST PROFITS OR LOST SAVINGS, ARISING FROM
--YOUR REPRODUCTION OR USE OF THESE MATERIALS, EVEN IF AN AASHTO, ITE, OR NEMA
--REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Some
--states or jurisdictions do not allow the exclusion or limitation of
--incidental, consequential or special damages, or the exclusion of implied
--warranties, so the above limitations may not apply to you.

NTCIP 1103 v03.52
Page 145

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

--
--Use of these materials does not constitute an endorsement or affiliation by
--or between AASHTO, ITE, or NEMA and you, your company, or your products and
--services.
--
--NTCIP is a trademark of AASHTO/ITE/NEMA.
--**

NTCIP1103v0352-RechMech DEFINITIONS ::= BEGIN

IMPORTS
 Counter, Opaque, NetworkAddress, null
 FROM RFC1155-SMI
 OBJECT-TYPE
 FROM RFC-1212
 Application, OerString
 FROM NTCIP8004-2008;

-- EXPORTS EVERYTHING

A.10.1 High-Resolution Data Recording Mechanism Objects
recMech OBJECT IDENTIFIER ::= { application 9 }
-- <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.9

-- This node is an identifier used to organize all objects for
-- support of recording mechanism functions that are found in devices.

-- NOTE—The recording mechanism class table is presented first to ease
-- the readability of the standard.

A.10.1.1 Maximum Recording Mechanism Classes Parameter
maxRecClasses OBJECT-TYPE
 SYNTAX INTEGER (1..254)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> The object defines the number of rows in the
 recClassTable that this device supports. This is a static
 table.
 <Unit>RecClass
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.9.1
 "
::= { recMech 1 }

A.10.1.2 Recording Mechanism Class Table
recClassTable OBJECT-TYPE
 SYNTAX SEQUENCE OF RecClassEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "<Definition>This table is used to configure recording mechanism
 limits and recording table maintenance.
 <TableType> static

NTCIP 1103 v03.52
Page 146

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.9.2
 "
::= { recMech 2 }

recClassEntry OBJECT-TYPE
 SYNTAX RecClassEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "<Definition>This object defines a row in the Recording Mechanism
 Class Table
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.9.2.1
 "
 INDEX { recClassNumber }
::= { recClassTable 1 }

RecClassEntry ::= SEQUENCE {
 recClassNumber INTEGER,
 recClassLimit INTEGER,
 recClassClearTime Counter,
 recClassDescription OCTET STRING,
 recClassNumRecordings INTEGER,
 recClassRecordingCounter INTEGER }

A.10.1.2.1 Recording Mechanism Class Number Parameter
recClassNumber OBJECT-TYPE
 SYNTAX INTEGER (1..254)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition>This is a class value that is to be configured.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.9.2.1.1
 "
::= { recClassEntry 1 }

A.10.1.2.2 Recording Mechanism Class Limit Parameter
recClassLimit OBJECT-TYPE
 SYNTAX INTEGER (0..254)
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition>This object specifies the maximum number of
 recordings of the associated class to store in the device. Once
 the limit is reached, the oldest recording of the matching class (based
 on recordingTriggerTime) is overwritten by any new recording of the
 same class. If the value of this object is set to a number
 smaller than the current number of rows within this class
 in the recRecordingTable, then the oldest entries shall be
 lost/deleted. The sum of all recording mechanism class limits shall
 not exceed the maxRecRecordings object; if a SET operation to
 this object causes the sum of recClassLimit objects to
 exceed maxRecRecordings, then the agent shall respond with
 a genErr.
 The recording cannot be logged if the recClass has an
 recClassLimit of zero (0).

NTCIP 1103 v03.52
Page 147

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

 <Unit>Recording
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.9.2.1.2
 "
::= { recClassEntry 2 }

A.10.1.2.3 Recording Mechanism Class Clear Time Parameter
recClassClearTime OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition>This object is used to clear multiple recordings
 from the recRecordingTable. All completed recordings of this class
 that have a recRecordingTriggerTime equal to or less than this object
 shall be cleared from the recRecordingTable. If this object has
 a value greater than the current value of globalTime, it
 shall prevent the triggering of any recordings of this class.
 <Unit>second
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.9.2.1.3
 "
 DEFVAL {0}
::= { recClassEntry 3 }

A.10.1.2.4 Recording Mechanism Class Description Parameter
recClassDescription OBJECT-TYPE
 SYNTAX OCTET STRING
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition>This object specifies a description of the class
 in ASCII characters.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.9.2.1.4
 "
::= { recClassEntry 4 }

A.10.1.2.5 Recording Mechanism Class Number of Rows in Recording Table Parameter
recClassNumRecordings OBJECT-TYPE
 SYNTAX INTEGER (0..255)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition>The number of recordings for this class that currently
 exist in the recRecordingTable.
 <Unit>Recording
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.9.2.1.5
 "
::= { recClassEntry 5 }

A.10.1.2.6 Class Recording Counter Parameter
recClassRecordingCounter OBJECT-TYPE
 SYNTAX INTEGER (0..65535)
 ACCESS read-only
 STATUS mandatory

NTCIP 1103 v03.52
Page 148

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

 DESCRIPTION
 "<Definition> This object is a counter that gets incremented
 every time a recording occurs for this class; it shall
 initialize to zero at power up. The value shall roll over
 each time it exceeds the maximum of 65535.
 <Unit>Recording
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.9.2.1.6
 "
::= { recClassEntry 6 }

A.10.1.3 Maximum Recording Mechanism Configurations Parameter
maxRecConfigs OBJECT-TYPE
 SYNTAX INTEGER (1..65534)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition>The number of rows that exist in the static
 recMechRecordingConfig table for this device.
 <Unit>RecordType
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.9.3
 "
::= { recMech 3}

A.10.1.4 Minimum Recording Sample Period
recMinSamplePeriod OBJECT-TYPE
 SYNTAX INTEGER (1..65535)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition>The minimum sample period for recordings supported by the
 device in units of 0.1 milliseconds.
 <Unit>Time
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.9.4
 "
::= { recMech 4}

A.10.1.5 Maximum Recording Sample Period
recMaxSamplePeriod OBJECT-TYPE
 SYNTAX INTEGER (1..65535)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition>The maximum sample period for recordings supported by the
 device in units of 0.1 milliseconds.
 <Unit>Time
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.9.5
 "
::= { recMech 5}

A.10.1.6 Recording Sample Period Resolution
recSamplePeriodResolution OBJECT-TYPE
 SYNTAX INTEGER (1..65535)

NTCIP 1103 v03.52
Page 149

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition>The sample period resolution for recordings supported
 by the device in units of 0.1 milliseconds. Allowable sample periods
 are restricted to (recMinSamplePeriod + recSamplePeriodResolution * n)
 where n is integer, 0 <= n, and
 n <= (recMaxSamplePeriod-recMinSamplePeriod)/recSamplePeriodResolution
 <Unit>Time
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.9.6
 "
::= { recMech 6}

A.10.1.7 Recording Configuration Table
recConfigTable OBJECT-TYPE
 SYNTAX SEQUENCE OF RecConfigEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "<Definition>A table containing Recording Mechanism Configuration
 information. The number of rows in this table is equal to
 the maxRecConfigs object. This table defines the
 parameters that the device monitors to create a recording.
 <TableType> static
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.9.7
 "
::= { recMech 7 }

recConfigEntry OBJECT-TYPE
 SYNTAX RecConfigEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "<Definition>This object defines an entry in the recording
 configuration table.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.9.7.1
 "
 INDEX { recConfigID }
::= { recConfigTable 1 }

RecConfigEntry ::= SEQUENCE {
 recConfigID INTEGER,
 recConfigClass INTEGER,
 recConfigMode INTEGER,
 recConfigCompareValue INTEGER,
 recConfigCompareValue2 INTEGER,
 recConfigCompareOID OBJECT IDENTIFIER,
 recConfigRecordOID OBJECT IDENTIFIER,
 recConfigTriggerPoint INTEGER,
 recConfigSamplePeriod INTEGER,
 recConfigSampleOID OBJECT IDENTIFIER,
 recConfigNumEntries INTEGER,
 recConfigAction INTEGER,
 recConfigStatus INTEGER }

NTCIP 1103 v03.52
Page 150

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

A.10.1.7.1 Recording Configuration ID Parameter
recConfigID OBJECT-TYPE
 SYNTAX INTEGER (1..65534)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition>This object contains the row number which is
 used to identify the recording associated with this row in the
 recConfigTable. The number of recording configuration IDs shall
 not exceed the value indicated in the maxRecConfigs object.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.9.7.1.1
 "
::= { recConfigEntry 1 }

A.10.1.7.2 Recording Configuration Class Parameter
recConfigClass OBJECT-TYPE
 SYNTAX INTEGER (1..254)
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition>This object contains the class value to assign
 to the recording associated with this row in the recording
 configuration table. This value is used in the recording
 table to organize various recordings defined in this table into
 logical groupings. This value shall not exceed the
 maxRecClasses object value.

 NOTE—A recording cannot be recorded if the RecClass has an
 recClassLimit of zero (0).
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.9.7.1.2
 "
 DEFVAL {1}
::= { recConfigEntry 2 }

A.10.1.7.3 Recording Configuration Mode Parameter
recConfigMode OBJECT-TYPE
 SYNTAX INTEGER { other (1),
 onChange (2),
 greaterThanValue (3),
 smallerThanValue (4),
 hysteresisBound (5),
 periodic (6),
 andedWithValue (7) }
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition>This object specifies the mode of operation for
 this recording. The modes are defined as follows:
 Value Description
 other the recording mode of operation is not
 described in this standard, refer to the
 device manual.
 onChange trigger a recording when the object value
 referenced by recConfigCompareOID
 changes. The values of

NTCIP 1103 v03.52
Page 151

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

 recConfigCompareValue and
 recConfigCompareValue2 are ignored in
 this mode.
 greaterThanValue trigger a recording when the object value
 referenced by recConfigCompareOID
 becomes greater than the value of
 recConfigCompareValue for the time
 (tenth seconds) defined by
 recConfigCompareValue2 (zero means
 immediate logging).
 smallerThanValue trigger a recording when the object value
 referenced by recConfigCompareOID
 becomes less than the value of
 recConfigCompareValue for the time
 (tenth seconds) defined by
 recConfigCompareValue2 (zero means
 immediate logging).
 hysteresisBound trigger a recording when the object value
 referenced by recConfigCompareOID
 becomes less than or greater than the
 bound values. The lowerbound value is the
 lower value of recConfigCompareValue and
 recConfigCompareValue2; the upperbound
 value is the higher value of the two values.

 When the object value becomes greater than
 the upper bound value, subsequent triggering of
 upperbound conditions shall not occur until
 the object value becomes less than the
 lower bound value.

 When the object value becomes less than
 the lower bound value, subsequent triggering
 of lowerbound conditions shall not occur
 until the object value becomes greater
 than the upper bound value.
 periodic trigger a recording every x seconds, where
 x is defined by the value stored in
 recConfigCompareValue. The values stored
 in recConfigCompareValue2 and
 recConfigCompareOID are ignored in this
 mode.
 andedWithValue trigger a recording when the object value
 referenced by recConfigCompareOID ANDED
 with the value of recConfigCompareValue
 is NOT equal to zero for the time (tenth
 seconds) defined by recConfigCompareValue2
 (zero means immediate logging). This allows
 monitoring of a specific bit; the condition
 becomes true anytime that any one of the
 selected bits become true.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.97.1.3
 "
 DEFVAL {onChange}
::= { recConfigEntry 3 }

NTCIP 1103 v03.52
Page 152

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

A.10.1.7.4 Recording Configuration Compare Value Parameter
recConfigCompareValue OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition>This object contains the comparison value to
 use with recConfigMode values (greaterThanValue,
 smallerThanValue, hysteresisBound). No value within this
 object is necessary when the recConfigMode-object has the
 value onChange (2).
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.97.1.4
 "
 DEFVAL {0}
::= { recConfigEntry 4 }

A.10.1.7.5 Recording Configuration Compare Value 2 Parameter
recConfigCompareValue2 OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition>If the recConfigMode is set to
 hysteresisBound, this object specifies the second comparison
 value for the hysteresis. If the recConfigMode is set to
 greaterThanValue, smallerThanValue, or andedWithValue, this
 object specifies the time (in tenth of seconds, +1 tenth / -0
 tenths) for which the samples used for comparison are
 true prior to the triggering condition becoming true. If the
 recConfigMode is set to onChange or periodic, the value of
 this object shall be ignored.

 The amount of time the condition istrue is measured in
 tenths of a second. The accuracy of this timer is limited to
 +1 tenth of a second and –0 tenths of a second. If the trigger
 is true for at least the time shown in this parameter +1
 tenth of a second, the condition shall trigger a recording.
 It is recognized that some designs only sample the condition
 periodically, in which case the condition is deemed true for
 at least the time indicated by this object before the trigger
 becomes true and the trigger shall always become true if the
 condition is true for a duration equal to the value shown in
 this object plus 1 tenth of a second.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.9.7.1.5
 "
 DEFVAL {0}
::= { recConfigEntry 5 }

A.10.1.7.6 Recording Configuration Compare Object Identifier Parameter
recConfigCompareOID OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition> This object contains the object identifier

NTCIP 1103 v03.52
Page 153

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

 which references the value against which the comparison
 is made. If the recConfigMode is set to periodic, the
 value of this object shall be ignored. If the
 recConfigMode is set to greaterThanValue, smallerThanValue
 or hysteresisBound, this object is required to reference an object
 whose SYNTAX resolves to a ranged or unranged INTEGER. As
 with all other objects that are sub-ranged by a given
 implementation, an agent should return a badValue error if
 it receives a set command indicating a OID which is not
 supported by the implementation or which is not null.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.9.7.1.6
 "
 DEFVAL {null}
::= { recConfigEntry 6 }

A.10.1.7.7 Recording Configuration Record Object Identifier Parameter
recConfigRecordOID OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition>This object contains the object identifier which
 indicates what value to record in a recording (e.g., signal
 states). As with all other objects that are sub-ranged by a
 given implementation, an agent should return a badValue
 error if it receives a set command indicating a value which
 is not supported by the implementation. The valid value
 range of this object shall not include any values, other
 than null, that do not correspond to objects that may exist
 within the agent, although it may be further restricted.

 The valid value range of this object shall not include
 objects under the following nodes:
 Security - { nema transportation devices global security }
 CHAP - { nema transportation protocols layers chap }

 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.9.7.1.7
 "
 DEFVAL {null}
::= { recConfigEntry 7 }

A.10.1.7.8 Recording Configuration Trigger Point Parameter
recConfigTriggerPoint OBJECT-TYPE
 SYNTAX INTEGER (0..100)
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition> This object contains the value of the recording
 trigger point in percent relative to the recConfigNumEntries.
 The device needs to collect pre-event records prior to the trigger
 occurring and ends the recording after recConfigNumEntries have
 been recorded. A value of zero (0) means to start the recording once
 the trigger condition occurs whereas a value of 100 means to stop
 the recording with the last record being the one collected
 immediately following the trigger condition occurring. If the trigger

NTCIP 1103 v03.52
Page 154

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

 point is less than 100 then at least one record entry needs to occur
after the
 trigger point.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.9.7.1.8
 "
 DEFVAL {80}
::= { recConfigEntry 8 }

A.10.1.7.9 Recording Configuration Sample Period Parameter
recConfigSamplePeriod OBJECT-TYPE
 SYNTAX INTEGER (0..65535)
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition> This object contains the sample period for recordings
 collected at specified by this configuration. The sample period is
 expressed in units of 0.1 milliseconds. Allowable sample periods
 are restricted to a value of zero (0) or
 (recMinSamplePeriod + recSamplePeriodResolution * n)
 where n is integer, 0 <= n, and
 n <= (recMaxSamplePeriod-recMinSamplePeriod)/recSamplePeriodResolution
 If the value is zero (0), then the samples are not collected on a
 periodic basis, but rather a new sample is collected whenever the
 value of the object specified by recConfigSampleOID changes (i.e.
 similar to event log ‘on-change’ mode). A set to any other value
 results in a badValue response.
 <Object Identifier> 1.3.6.1.4.1. 1206.4.1.1.7.9.7.1.9
 "
 DEFVAL {1000}
::= { recConfigEntry 9 }

A.10.1.7.10 Recording Configuration Sample OID Parameter
recConfigSampleOID OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition> This object contains the object identifier
 which references the value against which the ‘on-change’
 comparison is made. If recConfigSamplePeriod is non-zero,
 then the value of this object shall be ignored. As
 with all other objects that are sub-ranged by a given
 implementation, an agent should return a badValue error if
 it receives a set command indicating a OID which is not
 supported by the implementation or which is not null.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.9.7.1.10
 "
 DEFVAL {null}
::= { recConfigEntry 10 }

A.10.1.7.11 Recording Configuration Number Entries Parameter
recConfigNumEntries OBJECT-TYPE
 SYNTAX INTEGER (0..4095)
 ACCESS read-write

NTCIP 1103 v03.52
Page 155

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

 STATUS mandatory
 DESCRIPTION
 "<Definition> This object contains the maximum number of
 records in a recording defined by this configuration. A
 recording which collects its full amount of pre-events and
 post events creates a recording of this number of entries.
 If this object is zero (0), then no recordings are created
 based on this configuration.

 Note: If one wants to use block objects to retrieve a recording,
 then one should consider that block starting index value is limited to
 the range 00..255, and the number of entries above 255 is dependent on
 the size of the recEntry and packet size limitations.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.9.7.1.11
 "
 DEFVAL {100}
::= { recConfigEntry 11 }

A.10.1.7.12 Recording Configuration Action Parameter
recConfigAction OBJECT-TYPE
 SYNTAX INTEGER { other (1),
 disabled (2),
 record (3) }
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition>The value of this object indicates what action
 shall take place when this configuration is triggered.
 other - indicates that the action is other than defined
 in this standard.
 disabled - no recording is created due to this configuration.
 record - a recording is created in the recording table
 when this configuration is triggered.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.9.7.1.12
 "
 DEFVAL {disabled}
::= { recConfigEntry 12 }

A.10.1.7.13 Recording Configuration Status Parameter
recConfigStatus OBJECT-TYPE
 SYNTAX INTEGER { other (1),
 disabled (2),
 record (3),
 error (4) }
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition>The value of this object indicates the current
 status of the configured recording. Upon setting any object in
 this row of the recConfigTable, the agent
 determines if the setting is valid, and sets this object
 to one of the following states:
 other indicates that the action is successfully set to
 a mode other than that defined in this standard
 disabled indicates that the action is set to disabled

NTCIP 1103 v03.52
Page 160

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

A.10.1.11 Recording EntriesTable
recEntriesTable OBJECT-TYPE
 SYNTAX SEQUENCE OF RecEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "<Definition>A table containing the discrete Recording entry records.
 A request for an object from a row that has not been
 instantiated or has been cleared shall return a noSuchName
 error.
 <TableType> dynamic
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.9.11
 "
::= { recMech 11 }

recEntry OBJECT-TYPE
 SYNTAX RecEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "<Definition>This object defines an entry in the recording
 entry table. All entries within a recording shall be ordered
 chronologically from oldest to newest.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.9.11.1
 "
INDEX { recordingID, recEntryNumber }
::= { recEntriesTable 1 }

RecEntry::= SEQUENCE {
 recEntryNumber INTEGER,
 recSampleTime OCTET STRING,
 recValue Opaque }

A.10.1.11.1 Record Entry Number Parameter
recEntryNumber OBJECT-TYPE
 SYNTAX INTEGER (0..65535)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition>The entry number within this recording for this
 record. Entry numbers shall be assigned starting at 1 and
 shall increase up to the value specified by the associated
 recConfigNumEntries. A value of zero indicates that the row
 is unused (cleared).
 <Object Identifier> 1.3.6.1.4.1. 1206.4.1.1.7.9.11.1.1
 "
::= { recEntry 1 }

A.10.1.11.2 Record Entry Sample Time Parameter
recSampleTime OBJECT-TYPE
 SYNTAX OCTET STRING
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION

NTCIP 1103 v03.52
Page 161

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

 "<Definition>The time that the record entry was sampled at. This
 object consists of a string of six (6) octets. The first four (4)
 octets reflect the value of controllerLocalTime when the entry was
 sampled. The last two (2) octets reflect the time in milliseconds the
 sample occurred after the start of the second. The entry shall be
 collected within one recSamplePeriodResolution unit of time from the
 sample being triggered and timestamped with the time of collection
 <Unit>millisecond
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.9.11.1.2
 "
::= { recEntry 2 }

A.10.1.11.3 Record Entry Value Parameter
recValue OBJECT-TYPE
 SYNTAX Opaque
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition>The value of this object is set to the BER
 encoding of the value referenced by the recConfigRecordOID
 of the associated recordingConfigID when the entry was collected.
 Its length is variable. The value shall not contain any padding
 characters either before or after the values.
 NOTE – Opaque objects are doubly wrapped. For SNMP
 operations, which use BER, this would be {type, length,
 {type, length, value}}. For example, a zero-length octet
 string, would be encoded in BER as 0x44 02 04 00. For STMP
 or SFMP operations, which use OER, this would be { length,
 {type, length, value}}. For example, the same example would
 be encoded in OER as 0x02 04 00.
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.9.11.1.3
 "
::= { recEntry 3 }

A.10.1.12 Total Recordings Counter Parameter
numRecordings OBJECT-TYPE
 SYNTAX INTEGER (0..65535)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "<Definition> This object is a counter that gets incremented
 every time a recording is completed and shall initialize to zero
 at power up. The value shall roll over each time it exceeds
 the maximum of 65535.
 <Unit>Recordings
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.9.12
 "
::= { recMech 12 }

A.10.1.13 Clear Recording Classes
recClearClasses OBJECT-TYPE
 SYNTAX INTEGER (0..255)
 ACCESS read-write
 STATUS mandatory

NTCIP 1103 v03.52
Page 162

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

 DESCRIPTION
 "<Definition>This object commands the device to clear a recording
 class from recClassTable. A SET of zero has no effect on any
 recording classes. A SET = n, n <= maxRecClasses, shall cause
 recClassNumber = n to be deleted from the recClassTable and all
 related recording configurations, their recordings, their recording
 entries, their recording activities shall be deleted from the
 recConfigTable, recRecordingTable,
 and recEntriesTable respectively. A SET of 255 shall cause all
 entries in the recClassTable, recConfigTable, recRecordingTable, and
 recEntriesTable to be deleted.

 Upon performing the action requested, the device shall
 SET this object to zero (0). A GET shall always return zero (0).
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.9.13
 "
::= { recMech 13 }

A.10.1.14 Clear Recording Configurations
recClearConfigurations OBJECT-TYPE
 SYNTAX INTEGER (0..65535)
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition>This object commands the device to clear a recording
 configuration from the recConfigTable. A SET of zero has no effect
 on any recording configurations. A SET = n, n <= maxRecConfigs, shall
 cause recConfigID = n to be deleted from the recRecordingTable and all
 related recordings, their recording entries, and their recording
 activities shall be deleted from
 the recRecordingTable and recEntriesTable respectively. A SET of
 n = 65535 shall cause all entries in the recConfigTable,
 recRecordingTable, and recEntriesTable to be deleted.

 Upon performing the action requested, the device shall
 SET this object to zero (0). A GET shall always return zero (0).
 <Object Identifier> 1.3.6.1.4.1.1206.4.1.1.7.9.14
 "
::= { recMech 14 }

A.10.1.15 Clear Recording Data
recClearRecordingData OBJECT-TYPE
 SYNTAX INTEGER (0..65535)
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "<Definition>This object commands the device to clear a recording from
 the recRecordingTable and recEntriesTable.
 A SET of zero has no effect on any recordings. A SET = n,
 n <= maxRecordings, shall cause recRecordingID = n to be deleted
 from the recRecordingTable and all record entries related to the
 recording to be deleted from recEntriesTable. A SET of n = 65535
 shall cause all entries in both the recRecordingTable and
 recEntriesTable to be deleted.

NTCIP 1103 v03.52
Page 180

Do Not Copy Without Written Permission © 2016 AASHTO / ITE / NEMA

NTCIP 1103
v03 Sec.

Object
Name

Object
Type

Object
Status

Object
Support

Allowed
Values

Supported
Values

 recEntry -- record:M Yes -- --
A.10.1.11.1 recEntryNumber S record:M Yes 0..65535
A.10.1.11.2 recSampleTime S record:M Yes string(6)
A.10.1.11.3 recEntryValue S record:M Yes Opaque
A.10.1.12 numRecordings S record:M Yes 0..65535
A.10.1.13 recClearClasses C record:M Yes 0..255
A.10.1.14 recClearConfigurations C record:M Yes 0..65535
A.10.1.15 recClearRecordingData C record:M Yes 0..65535

E.14 Security Group
The security object definitions are defined in NTCIP 1103 v03. The Security Group shall consist of the
following objects:

Table 23 Security Group
NTCIP 1103

v03 Sec.
Object
Name

Object
Type

Object
Status

Object
Support

Allowed
Values

Supported
Values

secur SECURITY GROUP -- M Yes ---- ---
A.8.1 communityNameAdmin P secur : M Yes string
A.8.2 communityNamesMax S secur : M Yes 1..255
A.8.3 communityNameTable -- secur : M Yes --- ---

 communityNameTableEntry -- --- Yes --- ---
A.8.3.1 communityNameIndex S secur : M Yes 1..255
A.8.3.2 communityNameUser P secur : M Yes string
A.8.3.3 communityNameAccessMask P secur : M Yes gauge

E.15 RS232 Group
The RS 232 Group object definitions are defined IETF RFC 1317. The RS232 Group shall consist of the
following objects:

Table 24 RS232 Group
rfc

1317
Object
Name

Object
Type

Object
Status

Object
Support

Allowed
Values

Supported
Values

rs232 RS232 GROUP -- O Yes / No ---- ---
Rs232.1 rs232Number S rs232 : M Yes INT
Rs232.2 rs232PortTable -- rs232 : M Yes --- ---

 rs232PortEntry -- rs232 : M Yes --- ---
rs232.2.1 rs232PortIndex S rs232 : M Yes INT
rs232.2.2 rs232PortType S rs232 : M Yes 1..5
 other (1) -- --- Yes / No --- ---
 rs232 (2) -- --- Yes / No --- ---
 rs422 (3) -- --- Yes / No --- ---
 rs423 (4) -- --- Yes / No --- ---
 v35 (5) -- --- Yes / No --- ---
rs232.2.3 rs232PortInSigNumber S rs232 : O Yes / No INT
rs232.2.4 rs232PortOutSigNumber S rs232 : O Yes / No INT
rs232.2.5 rs232PortInSpeed P rs232 : M Yes INT
rs232.2.6 rs232PortOutSpeed P rs232 : M Yes INT

Rs232.3 rs232AsyncPortTable -- rs232 : M Yes --- ---
 rs232AsyncPortEntry -- rs232 : M Yes --- ---
rs232.3.1 rs232AsyncPortIndex S rs232 : M Yes INT
rs232.3.2 rs232AsyncPortBits P rs232 : O Yes / No 5..8
 five (5) -- --- Yes / No --- ---
 six(6) -- --- Yes / No --- ---
 seven(7) -- --- Yes / No --- ---
 eight(8) -- --- Yes / No --- ---
rs232.3.3 rs232AsyncPortStopBits P rs232 : O Yes / No 1..4

NTCIP 1103 v03.52
Page 187

© 2016 AASHTO / ITE / NEMA Do Not Copy Without Written Permission

rfc
1643

Object
Name

Object
Type

Object
Status

Object
Support

Allowed
Values

Supported
Values

dot3.2.1.8 dot3StatsLateCollisions S dot3 : M Yes counter
dot3.2.1.9 dot3StatsExcessiveCollisions S dot3 : M Yes counter
dot3.2.1.10 dot3StatsInternalMacTransmitErrors S dot3 : M Yes counter
dot3.2.1.11 dot3StatsCarrierSenseErrors S dot3 : M Yes counter
dot3.2.1.13 dot3StatsFrameTooLongs S dot3 : M Yes counter
dot3.2.1.16 dot3StatsInternalMacReceiveErrors S dot3 : M Yes counter
dot3.2.1.17 dot3StatsEtherChipSet S dot3 : M Yes OID

dot3.5 dot3CollTable -- dot3 : O Yes / No
dot3.5.1 dot3CollEntry -- dot3 : O Yes / No

dot3.5.1.2 dot3CollCount S dot3 : O Yes / No INT
dot3.5.1.3 dot3CollFrequencies S dot3 : O Yes / No counter

dot3.6 dot3Tests -- dot3 : O Yes / No
dot3.6.1 dot3TestTdr S dot3 : O Yes / No
dot3.6.2 dot3TestLoopBack S dot3 : O Yes / No

dot3.7 dot3Errors -- dot3 : O Yes / No
dot3.7.1 dot3ErrorInitError S dot3 : O Yes / No
dot3.7.2 dot3ErrorLoopbackError S dot3 : O Yes / No

§

